AI和人工智能与机器学习全景报告

今天分享的是AI系列深度研究报告:《AI和人工智能与机器学习全景报告》。

(报告出品方:appen)

报告共计:30页

图片

图片

图片

获取

数据获取仍是AI应用构建团队的主要瓶颈。

原因各不相同。例如,特定用例的数据可能不足,新的机器学习技术需要更多的数据,或者并未建立轻松高效获取所需数据的适当流程。

受访者对AI生命周期数据管理的看法有着强烈的共识,即企业领导者了解AI生命周期数据管理的价值 (90%同意),AI生命周期数据管理正在改变本企业的的经营方式 (87%同意)。决策者在AI生命周期四个阶段会平均分配数据管理时间。7成 (71%) 的受访者表示本企业在AI生命周期的许多阶段都很纠结。

尽管大多数受访者(88%)认为本企业拥有AI各阶段数据管理的必要内部资源,但只有42%的技 术专家认为,AI生命周期的数据获取阶段很有挑战性。不过,认为数据获取很有挑战性的企业 领导者并不太多(24%)。这表明,在对AI生命周期数据管理最大瓶颈的认识方面,技术专家和企业领导者之间仍然存在分歧。这就导致企业内的优先事项与预算的错位。

要使AI解决方案正常运行,就需要大量高质量数据来训练底层神经网络。多语言自然语言处理 (NLP) 便是个很好的示例。NLP依赖于数百万人的语音输入,并以ML(机器学习) 模型可以接受的格式准备和输入。

虽然我们调查的受访者中有五分之四表示他们拥有支持AI项目所需的适当数据量(81%) ,并且可以使用完成AI相关工作所需的工具 (90%),但他们中的大多数人仍在为低劣的数据质量而苦恼。依靠如此数据生成的系统往往性能不佳。当在NLP中集成多模态,或连接支持多种语言和内容类型的多个独立NLP解决方案时,数据质量问题就成为一个更大的挑战。

图片

图片

图片

图片

质量

世界日新月异,随着越来越多的智能设备、多屏幕的使用和收集信息的新数字工具的出现,全球数字足迹产生的数据量迅猛增长准确地构建和标注数据比以往任何时候都更加重要。

51%的受访者认为,数据准确性对其AI用例至关重要,46%的受访者认为,虽然这点很重要,但也可以变通。但只有20%的受访者认为,数据准确率高于80%,而认为数据准确率超过90%的受访者只有6%。

在AI生命周期开始阶段就使用正确的数据,将使后续阶段获得更好的结果。用于管理和准备数据的平均时间比例呈下降趋势,今年的平均占时间为47.4%,而2021年这一数字为53%。由于大多数受访者都使用外部数据提供商,因此可以推断,通过外包数据获取和准备工作,企业的数据科学家正在节省时间,并正确管理、清理和标注数据。

平均而言,管理和准备数据的平 均时间比例呈下降趋势今年这一 数字为47.4%,而 2021年为53%。

AI计划的最大障碍是数据管理。

AI计划的最大障碍是数据管理,41%的受访者表示,数据管理是最大的瓶颈。紧随其后的是,39%的受 访者表示,缺乏合格的人才——数据科学家和技术专家、数据架构师和工程师稀缺。31%的受访者表 示,缺乏足够的人员编制预算,增加了数据管理团队人员配备的挑战。合格数据科学家和技术专家的 短缺凸显了确保关键人才专注从事需要其宝贵技能的工作的重要性。为了解决这一问题,企业希望利 用外部数据提供商减少本企业在数据获取等领域的工作量,为数据科学家省出时间从事其他AI项目。

图片

图片

图片

评估

机器学习模型需要持续监控和调整,以确保输出准确、相关的信息。

虽然部署后的模型基本上是自主的,但模型验证和再训练却需要人机协同。受访者对人机协同的重要性有着强烈的共识。81%的受访者认为,它非常重要或极其重要,97%的受访者认为,人机协同评估对于AI模型的准确性很重要。

AI生命周期是个持续的过程,需要不断地获取、准备和评估新的数据输入和模型输出。因此,有很多企业使用外部数据提供商 (88%) ,从我们衡量的需要持续更新模型的数据点中也可见一斑。去年,有86%的企业至少每季度更新一次模型,今年这一数字已增加到91%。

随着数据的及时更新,接下来就需要与外部数据提供商合作,找到合适的合作伙伴非常重要。92%的受访者认为,使用合适的数据合作伙伴对于成功的模型部署和验证至关重要,大多数受访者(83%)希望能够使用一个合作伙伴为AI生命周期的所有阶段提供支持。持续验证模型性能很重要,它对成功的模型输出至关重要。

携手具有技术和专业能力的合适合作伙伴对于获得高质量的结果至关重要。在AI生命周期各阶段, 技术和专业能力对于获得高质量的结果都很重要,93%的受访者对此表示同意,51%的受访者表示强烈同意。

人工模型评估在很大程度上分配的预算最少,40%的受访者表示,他们给AI生命周期的最 后阶段分配的预算最少。预算分配与人机协同的重要性之间存在差距。模型评估对于确保AI模型的准确性以及减少数据 量需求至关重要。预先对人机协同投入更多预算,企业将节约资金和时间,降低未来重新评估的可能性。

图片

图片

采用

2022年,AI的采用将继续实现增长,带来效益与应用,这源于企业创新以及提高效率和生产力的强烈愿望。

随着AI使用的日益普及,改善A的工具和最佳实践也变得越来越先进。

在疫情期间竞相推出AI之后,人们对企业AI先进水平的看法可能正在转变。我们的数据显示,认为本企业在业内领先的受访者有所下降 (对于美国市场,2021为66%,2022年为55%),这可能是由于疫情期间AI使用的大量涌现和各行各业AI用例的大量增加。虽然很少有受访者认为本企业在AI采用方面落后,但认为本企业领先的企业领导者(49%) 及和同行不相上下的企业领导者(49%) 数量不分伯仲。

与欧洲企业相比,美国企业更有可能表示其在采用AI方面领先于同行 (分别为44%和55%) 。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/170940.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day02嵌入式---按键控灯

一、简单介绍 按键控制灯开关是一种常见的嵌入式系统示例项目,它通常用于演示嵌入式系统的基本控制能力。该项目由一个或多个LED和一个按键组成。通过按下按键,可以控制LED的开关状态,从而实现灯的亮灭控制。 二、查看功能手册 2.1 查看硬件…

基于单片机压力传感器MPX4115检测-报警系统proteus仿真+源程序

一、系统方案 1、本设计采用这51单片机作为主控器。 2、MPX4115采集压力值、DS18B20采集温度值送到液晶1602显示。 3、按键设置报警值。 4、蜂鸣器报警。 二、硬件设计 原理图如下: 三、单片机软件设计 1、首先是系统初始化 /*********************************…

鸿蒙开发之android开发人员指南《基础知识》

基于华为鸿蒙未来可能不再兼容android应用,推出鸿蒙开发系列文档,帮助android开发人员快速上手鸿蒙应用开发。 1. 鸿蒙使用什么基础语言开发? ArkTS是鸿蒙生态的应用开发语言。它在保持TypeScript(简称TS)基本语法风…

【免费使用】基于PaddleSeg开源项目开发的人像抠图Web API接口

基于PaddleSeg开源项目开发的人像抠图API接口,服务器不存储照片大家可放心使用。 1、请求接口 请求地址:http://apiseg.hysys.cn/predict_img 请求方式:POST 请求参数:{"image":"/9j/4AAQ..."} 参数是jso…

与Windows 10更新大同小异!一步一步教你如何更新Windows 11

如果你想让你的Windows 11设备获得最佳性能,那么定期更新是至关重要的。即使是最好的电脑如果不更新也会受到影响,因为更新会应用软件调整,帮助你的设备更快、更平稳地运行。它还提高了安全性,意味着你可以从Microsoft的最新功能中…

Kafka-TopicPartition

Kafka主题与分区 主题与分区 topic & partition,是Kafka两个核心的概念,也是Kafka的基本组织单元。 主题作为消息的归类,可以再细分为一个或多个分区,分区也可以看作对消息的二次归类。 分区的划分为kafka提供了可伸缩性、水…

【H5 Canvas】【平面几何】特殊图形绘制(箭头/正多边/正多尖角形等)

文章目录 直线/弧线 箭头 直线/弧线 箭头 // startX,startY 起始坐标 // endX,endY 结束坐标 // angel 圆弧角度,取值[0,PI]; 0表示画直线箭头,否则画圆弧箭头 CanvasRenderingContext2D.prototype.drawArrow function(startX,startY,endX,endY,angel)…

openEuler Linux 部署 FineBi

openEuler Linux 部署 FineBi 部署环境 环境版本openEuler Linux22.03MySQL8.0.35JDK1.8FineBi6.0 环境准备 升级系统内核和软件 yum -y updatereboot安装常用工具软件 yum -y install vim tar net-tools 安装MySQL8 将 MySQL Yum 存储库添加到系统的存储库列表中 sudo…

JVM——垃圾回收算法(垃圾回收算法评价标准,四种垃圾回收算法)

目录 1.垃圾回收算法发展简介2.垃圾回收算法的评价标准1.吞吐量2.最大暂停时间3.堆使用效率 3.垃圾回收算法01-标记清除算法垃圾回收算法-标记清除算法的优缺点 4.垃圾回收算法02-复制算法垃圾回收算法-复制算法的优缺点 5.垃圾回收算法03-标记整理算法标记整理算法的优缺点 6.…

适用于 Mac 和 Windows 的顶级U 盘数据恢复软件

由于意外删除或设备故障而丢失 USB 驱动器中的数据始终是一件令人压力很大的事情,检索该信息的最佳选择是使用优质数据恢复软件。为了让事情变得更容易,我们已经为您完成了所有研究并测试了工具,并且我们列出了最好的 USB 记忆棒恢复软件&…

队列实现栈VS栈实现队列

目录 【1】用队列实现栈 思路分析 ​ 易错总结 Queue.c&Queue.h手撕队列 声明栈MyStack 创建&初始化栈myStackCreate 压栈myStackPush 出栈&返回栈顶元素myStackPop 返回栈顶元素myStackTop 判断栈空否myStackEmpty 释放空间myStackFree MyStack总代码…

赢麻了!义乌一个村有5000个网红,有人年收租就300万!

#义乌一村电商年成交额超300亿# ,在中国,电商行业的发展可谓是日新月异,而位于浙江省义乌市的江北下朱村,正是这股潮流的一个典型代表。这个村子,处处弥漫着“直播”的气息,仿佛每个人都在为这个新兴行业助力。 江北下…

软件开发中的抓大放小vs极致细节思维

最近在开发过程中,遇到了好多次 “这个需求点这次要不要做?” 的问题, 主要有两方阵营,比如以研发主导的 “这次先不做、等必要的时候再做” ,另外一方是以PM主导的 “这个不做需求不完整,可能影响用户体验…

机器学习第14天:KNN近邻算法

☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 介绍 实例 回归任务 缺点 实例 分类任务 如何选择最佳参数 结语 介绍 KNN算法的核心思想是:当我们要判断一个数据为哪一类时…

Leetcode—15.三数之和【中等】

2023每日刷题&#xff08;四十一&#xff09; Leetcode—15.三数之和 实现代码 class Solution { public:vector<vector<int>> threeSum(vector<int>& nums) {sort(nums.begin(), nums.end());vector<vector<int>> ans;int i, j, k;int s,…

零基础学Linux内核:1、Linux源码组织架构

文章目录 前言一、Linux内核的特征二、Linux操作系统结构1.Linux在系统中的位置2.Linux内核的主要子系统3、Linux系统主要数据结构 三、linux内核源码组织1、下载Linux源码2、Linux版本号3、linux源码架构目录讲解 前言 这里将是我们从零开始学习Linux的第一节&#xff0c;这节…

Proteus仿真--高仿真数码管电子钟

本文介绍基于数码管的高仿真电子钟&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 本设计中80C51单片机作为主控&#xff0c;用74LS138作为数码管显示控制&#xff0c;共有4个按键&#xff0c;其中分别用于12/24小时显示切换、时间设置、小时加减控制和…

国内20个大模型中文场景测评及体验

中文场景能力测评 SuperCLUE排行榜 大模型及网站 公司&#xff08;大模型&#xff09; 智能程度 借鉴点 体验网站 备注 1 百度文心一言 高   文心一言   2 百川智能 高   百川大模型-汇聚世界知识 创作妙笔生花-百川智能   3 商汤商量SenseChat&#xff…

Matplotlib网格子图_Python数据分析与可视化

Matplotlib网格子图 plt.subplot()绘制子图调整子图之间的间隔plt.subplots创建网格 plt.subplot()绘制子图 若干彼此对齐的行列子图是常见的可视化任务&#xff0c;matplotlib拥有一些可以轻松创建它们的简便方法。最底层且最常用的方法是plt.subplot()。 这个函数在一个网格…

JavaScript 表达式

JavaScript 表达式 目录 JavaScript 表达式 一、赋值表达式 二、算术表达式 三、布尔表达式 四、字符串表达式 表达式是一个语句的集合&#xff0c;计算结果是个单一值。 在JavaScript中&#xff0c;常见的表达式有4种&#xff1a; &#xff08;1&#xff09;赋值表达式…