【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL

文章目录

  • 前言
  • 前馈神经网络
    • 数据组织
    • Dataset
    • 网络结构
    • 训练
    • 超参设置
  • RNN
    • 数据组织&Dataset
    • 网络结构
    • 训练
    • 超参设置
  • 注意力网络
    • 数据组织&Dataset
    • 网络结构
      • Attention部分
      • 完整模型
    • 训练部分
    • 超参设置
  • 结果与分析
    • 训练集Loss
    • 测试集PPL

前言

本次实验主要针对前馈神经网络,RNN,以及基于注意力机制的网络学习语言建模任务,并在测试集上计算不同语言模型的PPL

  • PPL计算:我们采用teacher forcing的方式,给定ground truth context,让其预测next token,并将这些token的log probability进行平均,作为文本的PPL
  • CrossEntropyLoss:可以等价于PPL的计算,因此,我们将交叉熵损失作为ppl,具体原理可参考本人博客:如何计算文本的困惑度perplexity(ppl)_ppl计算_长命百岁️的博客-CSDN博客
  • 我们将数据分为训练集和测试集(后1000条)
  • 分词采用bart-base-chinese使用的tokenizer词表大小为21128。当然,也可以利用其他分词工具构建词表
  • 本文仅对重要的实验代码进行说明

前馈神经网络

数据组织

我们利用前馈神经网络,训练一个2-gram语言模型,即每次利用两个token来预测下一个token

def get_n_gram_data(self, data, n):res_data = []res_label = []if len(data) < n:raise VallueError("too short")start_idx = 0while start_idx + n <= len(data):res_data.append(data[start_idx: start_idx + n - 1])res_label.append(data[start_idx + n - 1])start_idx += 1return res_data, res_label
  • 该函数的输入是一个分词后的token_ids列表,输出是将这个ids分成不同的data, label
def get_data(path, n):res_data = []res_label = []tokenizer = BertTokenizer.from_pretrained('/users/nishiyu/ict/Models/bart-base-chinese')with open(path) as file:data = file.readlines()for sample in data:sample_data, sample_label = get_n_gram_data(tokenizer(sample, return_tensors='pt')['input_ids'][0], n)for idx in range(len(sample_data)):res_data.append(sample_data[idx])res_label.append(sample_label[idx])return res_data, res_label
  • 该函数对数据集中的每条数据进行分词,并得到对应的data, label
  • 值得注意的是,这样所有的输入/输出都是等长的,因此可以直接组装成batch

Dataset

class NGramDataset(Dataset):def __init__(self, data_path, window_size=3):self.data, self.label = get_data(data_path, window_size)def __len__(self):return len(self.data)def __getitem__(self, i):return self.data[i], self.label[i]
  • 通过window_size来指定n-gram
  • 每次访问返回datalabel

网络结构

class FeedForwardNNLM(nn.Module):def __init__(self, vocab_size, embedding_dim, window_size, hidden_dim):super(FeedForwardNNLM, self).__init__()self.embeddings = nn.Embedding(vocab_size, embedding_dim)self.e2h = nn.Linear((window_size - 1) * embedding_dim, hidden_dim)self.h2o = nn.Linear(hidden_dim, vocab_size)self.activate = F.reludef forward(self, inputs):embeds = self.embeddings(inputs).reshape([inputs.shape[0], -1])hidden = self.activate(self.e2h(embeds))output = self.h2o(hidden)return output
  • 网络流程:embedding层->全连接层->激活函数->线性层词表映射

训练

class Trainer():def __init__(self, args, embedding_dim, hidden_dim):self.args = argsself.model = FeedForwardNNLM(self.args.vocab_size, embedding_dim, args.window_size, hidden_dim)self.train_dataset = NGramDataset(self.args.train_data, self.args.window_size)self.train_dataloader = DataLoader(self.train_dataset, batch_size=args.batch_size, shuffle=True)self.test_dataset = NGramDataset(self.args.test_data, self.args.window_size)self.test_dataloader = DataLoader(self.test_dataset, batch_size=args.batch_size, shuffle=False)def train(self):self.model.train()device = torch.device('cuda')self.model.to(device)criterion = nn.CrossEntropyLoss()optimizer = Adam(self.model.parameters(), lr=5e-5)for epoch in range(args.epoch):total_loss = 0.0for step, batch in enumerate(self.train_dataloader):input_ids = batch[0].to(device)label_ids = batch[1].to(device)logits = self.model(input_ids)loss = criterion(logits, label_ids)loss.backward()optimizer.step()self.model.zero_grad()total_loss += lossprint(f'epoch: {epoch}, train loss: {total_loss / len(self.train_dataloader)}')self.evaluation()
  • 首先调用datasetdataloader对数据进行组织
  • 然后利用CrossEntropyLossAdam优化器(lr=5e-5)进行训练
  • 评估测试集效果

超参设置

def get_args():parser = argparse.ArgumentParser()# 添加命令行参数parser.add_argument('--vocab_size', type=int, default=21128)parser.add_argument('--train_data', type=str)parser.add_argument('--test_data', type=str)parser.add_argument('--window_size', type=int)parser.add_argument('--epoch', type=int, default=50)parser.add_argument('--batch_size', type=int, default=4096)args = parser.parse_args()return args
  • embedding_dim=128
  • hidden_dim=256
  • epoch = 150

RNN

数据组织&Dataset

RNN的数据组织比较简单,就是每一行作为一个输入就可以,不详细展开

网络结构

class RNNLanguageModel(nn.Module):def __init__(self, args, embedding_dim, hidden_dim):super(RNNLanguageModel, self).__init__()self.args = argsself.embeddings = nn.Embedding(self.args.vocab_size, embedding_dim)self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)self.linear = nn.Linear(hidden_dim, self.args.vocab_size)def forward(self, inputs):embeds = self.embeddings(inputs)output, hidden = self.rnn(embeds)output = self.linear(output)return output
  • 网络流程:embedding->rnn网络->线性层词表映射
  • 这里RNN模型直接调用API

训练

自回归模型的训练是值得注意的

class Trainer():def __init__(self, args, embed_dim, head_dim):self.args = argsself.tokenizer = BertTokenizer.from_pretrained('/users/nishiyu/ict/Models/bart-base-chinese')self.model = RNNLanguageModel(args, embed_dim, head_dim)self.train_dataset = AttenDataset(self.args.train_data)self.train_dataloader = DataLoader(self.train_dataset, batch_size=args.batch_size, shuffle=True)self.test_dataset = AttenDataset(self.args.test_data)self.test_dataloader = DataLoader(self.test_dataset, batch_size=args.batch_size, shuffle=False)def train(self):self.model.to(self.args.device)criterion = nn.CrossEntropyLoss()optimizer = Adam(self.model.parameters(), lr=5e-5)for epoch in range(args.epoch):self.model.train()total_loss = 0.0for step, batch in enumerate(self.train_dataloader):tokens = self.tokenizer(batch, truncation=True, padding=True, max_length=self.args.max_len, return_tensors='pt').to(self.args.device)input_ids = tokens['input_ids'][:, :-1]label_ids = tokens['input_ids'][:, 1:].clone()pad_token_id = self.tokenizer.pad_token_idlabel_ids[label_ids == pad_token_id] = -100 logits = self.model(input_ids)loss = criterion(logits.view(-1, self.args.vocab_size), label_ids.view(-1))loss.backward()optimizer.step()self.model.zero_grad()total_loss += lossprint(f'epoch: {epoch}, train loss: {total_loss / len(self.train_dataloader)}')self.evaluation()
  • 与FFN不同的是,我们在需要数据的时候才进行分词

  • 注意到,数据集中不同数据的长度是不同的,我们想要将这些数据组织成batch,进行并行化训练,需要加padding。在训练过程中我们选择右padding

    input_ids = tokens['input_ids'][:, :-1]
    label_ids = tokens['input_ids'][:, 1:].clone()
    pad_token_id = self.tokenizer.pad_token_id
    label_ids[label_ids == pad_token_id] = -100 
    
    • 这四句是训练的核心代码,决定是否正确,从上往下分别是:
      • 组织输入:因为我们要预测下一个token,因此,输入最多就进行到倒数第二个token,所以不要最后一个
      • 组织label:因为我们要预测下一个token,因此作为label来说,不需要第一个token
      • 组织loss:对于padding部分的token,是不需要计算loss的,因此我们将padding部分对应的label_ids设置为-100,这是因为,损失函数默认id为-100的token为pad部分,不进行loss计算

超参设置

  • embedding_dim=512
  • hidden_dim=128
  • epoch=30
  • batch_size=12

注意力网络

数据组织&Dataset

与RNN完全相同,不进行介绍

网络结构

因为此网络比较重要,我之前也BART, GPT-2等模型的源码,因此我们选择自己写一个一层的decoder-only模型

  • 我们主要实现了自注意力机制
  • dropoutlayerNorm,残差链接等操作并没有关注

Attention部分

class SelfAttention(nn.Module):def __init__(self,args,embed_dim: int,num_heads: int,bias = True):super(SelfAttention, self).__init__()self.args = argsself.embed_dim = embed_dimself.num_heads = num_headsself.head_dim = embed_dim // num_headsself.scaling = self.head_dim**-0.5self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()def forward(self, hidden_states: torch.Tensor):"""Input shape: Batch x seq_len x dim"""bsz, tgt_len, _ = hidden_states.size()# get query projquery_states = self.q_proj(hidden_states) * self.scaling# self_attentionkey_states = self._shape(self.k_proj(hidden_states), -1, bsz) # bsz, heads, seq_len, dimvalue_states = self._shape(self.v_proj(hidden_states), -1, bsz)proj_shape = (bsz * self.num_heads, -1, self.head_dim)query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) # bsz_heads, seq_len, dimkey_states = key_states.reshape(*proj_shape)value_states = value_states.reshape(*proj_shape)attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bsz*head_num, tgt_len, src_lensrc_len = key_states.size(1)# causal_maskmask_value = torch.finfo(attn_weights.dtype).minmatrix = torch.ones(bsz * self.num_heads, src_len, tgt_len).to(self.args.device)causal_mask = torch.triu(matrix, diagonal=1)causal_weights = torch.where(causal_mask.byte(), mask_value, causal_mask.double())attn_weights += causal_weights# do not need attn_maskattn_probs = nn.functional.softmax(attn_weights, dim=-1)# get outputattn_output = torch.bmm(attn_probs, value_states)attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)attn_output = attn_output.transpose(1, 2)attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)attn_output = self.out_proj(attn_output)return attn_output
  • 首先我们定义了embed_dim, 多少个头,以及K,Q,V的映射矩阵
  • forward函数的输入是一个batch的embedding,流程如下
    • 将输入分别映射为K, Q, V, 并将尺寸转换为多头的形式,shape(bsz*num_heads, seq_len, dim)
    • 进行casual mask
      • 首先定义一个当前数据个数下的最小值,当一个数加上这个值再进行softmax,概率基本为0
      • 根据K, Q, V,得到一个分数矩阵attn_weights
      • 然后定义一个大小为bsz * self.num_heads, src_len, tgt_len的全1矩阵
      • 将该矩阵变成一个上三角矩阵,其中为1的地方,代表着当前位置需要进行mask,其他位置都是0
      • 对于矩阵中为1的地方,我们用定义的最小值来替换、
      • 将分数矩阵与mask矩阵相加,就实现了一个causal 分数矩阵
      • 然后进行softmax,通过V得到目标向量
    • 为什么没有对padding进行mask
      • 因为不需要,我们进行的是右padding,所以causal mask已经对后面的padding进行了mask
      • 另外,当真正的输入输出算完后,对于后面padding位置对应的输出,是不统计loss的,因此padding没有影响

完整模型

class AttentionModel(nn.Module):def __init__(self, args, embed_dim, head_num):super(AttentionModel, self).__init__()self.args = argsself.embeddings = nn.Embedding(self.args.vocab_size, embed_dim)self.p_embeddings = nn.Embedding(self.args.max_len, embed_dim)self.attention = SelfAttention(self.args, embed_dim, head_num)self.output = nn.Linear(embed_dim, self.args.vocab_size)def forward(self, input_ids, attn_mask):embeddings = self.embeddings(input_ids)position_embeddings = self.p_embeddings(torch.arange(0, input_ids.shape[1], device=self.args.device))embeddings = embeddings + position_embeddingsoutput = self.attention(embeddings, attn_mask)logits = self.output(output)return logits
  • 我们不仅做了embedding,还实现了position embedding

训练部分

训练阶段与RNN一直,也是组织输入,输出,以及loss

超参设置

  • embed_dim=512
  • num_head=8
  • epoch=30
  • batch_size=12

结果与分析

训练集Loss

  • FFN loss(最小值4.332110404968262)

    在这里插入图片描述

  • RNN loss(最小值4.00740385055542)

    在这里插入图片描述

  • Attention loss(最小值3.7037367820739746)

    在这里插入图片描述

测试集PPL

  • FFN(最小值4.401318073272705)

    在这里插入图片描述

  • RNN(最小值4.0991902351379395)

    在这里插入图片描述

  • Attention(最小值3.9784348011016846)

    在这里插入图片描述

从结果来看,无论是train loss, 还是test ppl,均有FFN>RNN>Attention的关系,且我们看到后两个模型还未完全收敛,性能仍有上升空间。

  • 尽管FFN的任务更简单,其性能仍最差,这是因为其模型结构过于简单
  • RNN与Attention任务一致,但性能更差
  • Attention性能最好,这些观察均符合基本认识

代码可见:ShiyuNee/Train-A-Language-Model-based-on-FFN-RNN-Attention (github.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/170416.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

#define例题

我们已经学了#define的所有知识&#xff0c;让我们来看这道题&#xff0c;可不要又陷入陷阱 题目要求&#xff1a; #define N 4 #define Y(n) ((N2)*n) int main() {int z 2 * (N Y(5 1));printf("z%d\n", z);return 0; } 求这个z的值是多少&#xff1f; 我们直接…

机器学习算法——主成分分析(PCA)

目录 1. 主体思想2. 算法流程3. 代码实践 1. 主体思想 主成分分析&#xff08;Principal Component Analysis&#xff09;常用于实现数据降维&#xff0c;它通过线性变换将高维数据映射到低维空间&#xff0c;使得映射后的数据具有最大的方差。主成分可以理解成数据集中的特征…

Linux加强篇005-用户身份与文件权限

目录 前言 1. 用户身份与能力 2. 文件权限与归属 3. 文件的特殊权限 4. 文件的隐藏属性 5. 文件访问控制列表 6. su命令与sudo服务 前言 悟已往之不谏&#xff0c;知来者之可追。实迷途其未远&#xff0c;觉今是而昨非。舟遥遥以轻飏&#xff0c;风飘飘而吹衣。问征夫以…

ssm+vue的物资物流系统的设计与实现(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的物资物流系统的设计与实现&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体…

JDK源码系列:StringBuffer与StringBuilder对比

一、源码分析StringBuffer与StringBuilder的区别 1、StringBuffer是多线程安全的&#xff0c;StringBuilder是多线程不安全的 多线程安全指的是 多个线程同时对一个对象进行append 等操作&#xff0c;不会出现覆盖、丢失的情况。 看下StringBuffer是如何做到多线程安全的&#…

BART 并行成像压缩感知重建:联合重建

本文使用 variavle-density possion-disc 采样的多通道膝盖数据进行并行重建和压缩感知重建。 0 数据欠采样sampling pattern 1 计算ESPIRiT maps % A visualization of k-space dataknee = readcfl(data/knee); ksp_rss = bart(rss 8, knee);ksp_rss = squeeze(ksp_rss); figu…

基于单片机的肺活量检测系统(论文+源码)

1.系统设计 在基于单片机的肺活量检测系统中&#xff0c;在硬件上整个系统通过利用主控制器STC89C52单片机来实现对整个系统进行控制的功能&#xff0c;通过采用LCD1602实现实时液晶显示数据的功能&#xff0c;通过肺活量传感器XGZP6847ADC0832实现监测肺活量的工作&#xff0…

终端移动性管理

联系前面所学的知识我们知道&#xff0c;移动性管理主要分为两大类&#xff1a;空闲状态下的移动性管理、连接状态下的移动性管理。我们今天来详细了解他们的工作原理~ 目录 移动性管理分类 1、空闲状态下的移动性管理 2、连接状态下的移动性管理 手机选择天线的原则 4G天…

使用Kibana让es集群形象起来

部署Elasticsearch集群详细步骤参考本人&#xff1a; https://blog.csdn.net/m0_59933574/article/details/134605073?spm1001.2014.3001.5502https://blog.csdn.net/m0_59933574/article/details/134605073?spm1001.2014.3001.5502 kibana部署 es集群设备 安装软件主机名…

Kafka系列 - 生产者客户端架构以及3个重要参数

整体架构 整个生产者客户端由两个县城协调运行&#xff0c;这两个线程分别为主线程和Sender线程&#xff08;发送线程&#xff09;。 主线程中由KafkaProducer创建消息&#xff0c;然后通过可能的拦截器&#xff0c;序列化器和分区器之后缓存到消息累加器&#xff08;RecordAc…

nodejs+vue+python+PHP+微信小程序-健身俱乐部在线管理平台的设计与实现-安卓-计算机毕业设计

随着经济的发展、财富的累积&#xff0c;人们生活水平、生活质量大幅度提高&#xff0c;生活环境得到明显改善&#xff0c;但是竞争激烈、人们生活压力大、生活节奏快加上饮食习惯和生活方式不合理导致国内 亚健康人群逐年增多。统计数据表明当前我国亚健康人群比例已经超过了7…

VScode

一、VSCode设置中文 1、首先我们打开vscode&#xff0c;进入编辑页面后点击左边栏的图示图标进入“EXTENSIONS”面板 2、进入后&#xff0c;在上方搜索“Chinese”&#xff0c;搜索到中文&#xff08;简体&#xff09;后&#xff0c;点击“install”按钮。 3、等待自动下载安装…

【一文讲清楚 Anaconda 相关环境配置】

文章目录 0 前言1 Package 与环境1.1 module1.2 package1.3 环境 2 Conda、Miniconda、Anaconda和Pip & PyPI2.1 Conda2. 2 Miniconda2.3 Anaconda2.3.1 Anaconda Navigator2.3.2 Anaconda PowerShell Prompt & Anaconda Prompt2.3.3 Jupyter notebook 2.4 Pip & P…

深度学习第二天:RNN循环神经网络

☁️主页 Nowl &#x1f525;专栏《机器学习实战》 《机器学习》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 文章目录 介绍 记忆功能对比展现 任务描述 导入库 处理数据 前馈神经网络 循环神经网络 编译与训练模型 模型预测 可能的问题 梯度消失 梯…

2023/11/24JAVAweb学习

age只会执行成立的,show其实都展示了,通过display不展示 使用Vue,必须引入Vue.js文件 假如运行报错,以管理员身份打开vscode,再运行 ------------------------------------------------------------------- 更改端口号

HarmonyOS简述及开发环境搭建

一、HarmonyOS简介 1、介绍 HarmonyOS是一款面向万物互联时代的、全新的分布式操作系统。有三大系统特性&#xff0c;分别是&#xff1a;硬件互助&#xff0c;资源共享&#xff1b;一次开发&#xff0c;多端部署&#xff1b;统一OS&#xff0c;弹性部署。 HarmonyOS通过硬件互…

微服务实战系列之Nginx(技巧篇)

前言 今天北京早晨竟然飘了一些“雪花”&#xff0c;定睛一看&#xff0c;似雪非雪&#xff0c;像泡沫球一样&#xff0c;原来那叫“霰”。 自然中&#xff0c;雨雪霜露雾&#xff0c;因为出场太频繁&#xff0c;认识门槛较低&#xff0c;自然不费吹灰之力&#xff0c;即可享受…

基于 STM32 的温度测量与控制系统设计

本文介绍了如何基于 STM32 微控制器设计一款温度测量与控制系统。首先&#xff0c;我们将简要介绍 STM32 微控制器的特点和能力。接下来&#xff0c;我们将详细讨论温度传感器的选择与接口。然后&#xff0c;我们将介绍如何使用 STM32 提供的开发工具和相关库来进行温度测量和控…

电脑技巧:电脑常见蓝屏、上不了网等故障及解决办法

目录 一、电脑蓝屏 常见原因1: 病毒木马 常见原因2: 安装了不兼容的软件 二、电脑不能上网 常见原因1: 新装系统无驱动 常见原因2: DNS服务器异常 常见原因3: 硬件问题 三、电脑没声音 常见原因1: 未安装驱动 常见原因2: 硬件故障 四、电脑屏幕不显示 常见原因1: 显…

html实现我的故乡,城市介绍网站(附源码)

文章目录 1. 我生活的城市北京&#xff08;网站&#xff09;1.1 首页1.2 关于北京1.3 北京文化1.4 加入北京1.5 北京景点1.6 北京美食1.7 联系我们 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43…