基于厨师算法优化概率神经网络PNN的分类预测 - 附代码

基于厨师算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于厨师算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于厨师优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用厨师算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于厨师优化的PNN网络

厨师算法原理请参考:https://blog.csdn.net/u011835903/article/details/130534839

利用厨师算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

厨师参数设置如下:

%% 厨师参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,厨师-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/169141.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis持久化:RDB:和AOF

目录 RDB 持久化 1、修改配置文件:redis.conf 2、RDB模式自动触发保存快照 3、RDB模式手动触发保存快照 4、RDB的优缺点 AOF持久化 1、AOF持久化工作流程 2、修改配置文件开启AOF 3、AOF优缺点 4、AOF的重写机制原理 RDBAOF混合模式 redis持久化有两种方…

《尚品甄选》:后台系统——结合redis实现用户登录

文章目录 一、统一结果实体类二、统一异常处理三、登录功能实现四、CORS解决跨域五、图片验证码六、登录校验功能实现6.1 拦截器开发6.2 拦截器注册 七、ThreadLocal 要求: 用户输入正确的用户名、密码以及验证码,点击登录可以跳转到后台界面。未登录的用…

Map循环注意事项

在使用map()方法进行循环遍历时,有一些注意事项需要注意: 给每个生成的元素添加唯一的key属性: 在使用map()方法生成组件列表时,为了帮助React准确地识别和更新每个组件,需要为每个生成的元素(组件&#x…

802.11 帧的Reason Code 位和Status Code 位

Reason Code 位 当对方不适合加入网络时,工作站会送出 Disassociation(解除连接)或 Deauthentication(解除身份认证)帧作为应答。这些帧当中包含一个长度 16bit 的 Reason Code(原因代码)位&am…

基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码

基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工兔优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络…

P10 C++类和结构体的区别

目录 01 前言 02 struct 与 class格式上的区别 03 struct 与 class 使用上的区别 04 常用的代码风格 01 前言 今天这期我们主要解决一个问题,就是 C 中的类和结构体有什么区别。 本期我们有两个术语,结构体 struct,它是 structure 的缩写…

深度学习之基于Tensorflow银行卡号码识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介银行卡号码识别的步骤TensorFlow的优势 二、功能三、系统四. 总结 一项目简介 # 深度学习基于TensorFlow的银行卡号码识别介绍 深度学习在图像识别领域取得…

【GridSearch】 简单实现并记录运行效果

记录了使用for循环实现网格搜索的简单框架。 使用df_search记录每种超参数组合下的运行结果。 lgb_model.best_score返回模型的最佳得分 lgb_model.best_iteration_返回模型的最佳iteration也就是最佳n_extimator import numpy as np import pandas as pd import lightgbm as …

【JVM】一篇通关JVM垃圾回收

目录 1. 如何判断对象可以回收1-1. 引用计数法1-2. 可达性分析算法1-3. 四种引用强引用软引用弱引用虚引用终结器引用 2. 垃圾回收算法3. 分代垃圾回收4. 垃圾回收器5. 垃圾回收调优 1. 如何判断对象可以回收 1-1. 引用计数法 引用计数法 只要一个对象被其他变量所引用&…

甲烷产生及氧化

温室气体排放被认为是加速气候变化的重要因素,甲烷(CH4)是仅次于二氧化碳(CO2)的重要温室气体,其百年温室效应潜势是CO2的28倍[1-2]。湿地中的CH4由产甲烷古菌在水体底部或沉积层严格厌氧环境下产生并释放进入水体,产生的CH4向上覆水运输过程…

RealSense深度相机在Ubuntu18.04的ros环境下,保存同一时刻下深度图像和彩色图像

背景:Ubuntu18.04 ROS Melodic 已安装配置好RealSense相关程序,链接D435i相机后,得到如下Rostopic: /camera/color/image_raw # 彩色图像信息 /camera/depth/image_rect_raw # 深度图像信息 于是写一个python程序&am…

内网横向技术

如果拿下了一台机器之后寻找域控机器 ipconfig /all 找到域名 ping 域名或者nslookup域名

【数据库】数据库物理执行计划最基本操作-表扫描机制与可选路径,基于代价的评估模型以及模型参数的含义

物理执行计划基本操作符 ​专栏内容: 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏…

广州华锐互动:AR可视化展示昆虫让教学过程更直观生动

随着科技的不断发展,AR(增强现实)技术已经逐渐走进我们的生活。通过AR技术,我们可以将虚拟的信息叠加到现实世界中,让现实世界变得更加丰富多彩。在这篇文章中,我们将以昆虫为主题,探讨AR增强现…

ubuntu20.04下安装标注工具CVAT

1 安装docker sudo apt-get update sudo apt-get --no-install-recommends install -y apt-transport-https ca-certificates \curl \gnupg-agent \software-properties-commoncurl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - sudo add-apt-r…

ArgoCD基本组件

ArgoCD有5个基本组件, $ kubectl get po -n argocd NAME READY STATUS RESTARTS AGE argocd-application-controller-0 1/1 Running 0 19h argocd-dex-server-767fb49f59-7rxn7 1/1 Running 0…

解密C语言指针中的解引用操作:深入理解 * 运算符

导言: C语言中的指针是一项复杂而强大的特性,而其中的解引用操作则是使得程序员能够直接访问内存中数据的关键。本篇博客将深入研究解引用操作,通过 * 运算符的应用,探讨如何巧妙地操作指针,从而实现对内存中数据的精准…

002、ArkTS

之——开发语言 杂谈 基础编程语言ArkTS。引用来自华为开发者课堂。 ArkTS是HarmonyOS优选的主力应用开发语言。它在TypeScript(简称TS)的基础上,匹配ArkUI框架,扩展了声明式UI、状态管理等相应的能力,让开发者以更简洁…

tp8 使用rabbitMQ(4)路由模式

路由模式 在第三节中我们使用的 交换机的 fanout 把生产者的消息广播到了所有与它绑定的队列中处理,但是我们能不能把特定的消息,发送给指定的队列,而不是广播给所有队列呢? 如图,交换机把 orange 类型的消息发送给了…

zookeeper 单机伪集群搭建简单记录

1、官方下载加压后,根目录下新建data和log目录,然后分别拷贝两份,分别放到D盘,E盘,F盘 2、data目录下面新建myid文件,文件内容分别为1,2,3.注意文件没有后缀,不能是txt文…