基于 STM32F7 和神经网络的实时人脸特征提取与匹配算法实现

本文讨论了如何使用 STM32F7 和神经网络模型来实现实时人脸特征提取与匹配算法。首先介绍了 STM32F7 的硬件和软件特点,然后讨论了人脸特征提取和匹配算法的基本原理。接下来,我们将重点讨论如何在 STM32F7 上实现基于神经网络的人脸特征提取与匹配算法,并给出相应的代码示例。最后,我们评估了系统的性能,并讨论了一些优化的可能性。

1. 简介
STM32F7 是 STMicroelectronics 公司的一款高性能 ARM Cortex-M7 单片机,它具有强大的计算能力和丰富的外设。
神经网络是一种在人脸识别中广泛使用的算法,可以实现对人脸图像进行特征提取和匹配。本文将结合这两者,实现一个基于 STM32F7 和神经网络的人脸特征提取与匹配算法,以实现实时人脸识别应用。

2. STM32F7 硬件和软件准备
在开始之前,需要准备 STM32F7 开发板和 STM32CubeIDE 开发环境。
此外,还需要安装适当的神经网络框架,例如 TensorFlow Lite for Microcontrollers。通过 STM32CubeMX 工具,配置外设和引脚分配,并生成相应的代码框架。

3. 人脸特征提取和匹配算法
人脸特征提取通过神经网络将人脸图像转换为具有固定长度的特征向量。
为了实现实时性能,我们可以选择一种轻量级的神经网络模型,例如 MobileNet 或 Tiny FaceNet。人脸匹配算法通过计算两个特征向量之间的相似度来判断是否为同一个人。

4. 在 STM32F7 上实现神经网络模型
使用 TensorFlow Lite for Microcontrollers 框架,可以将预训练好的神经网络模型转换为适用于 STM32F7 的量化模型。然后,可以使用适当的库和函数来加载和运行模型。以下是一个简单的示例:

```c
#include <tensorflow/lite/micro/micro_error_reporter.h>
#include <tensorflow/lite/micro/micro_interpreter.h>
#include <tensorflow/lite/schema/schema_generated.h>
#include <tensorflow/lite/version.h>// 加载和运行 TensorFlow Lite 模型
void run_tflite_model(const uint8_t* model_data, size_t model_size) {// 创建错误报告器tflite::MicroErrorReporter error_reporter;// 加载模型tflite::Model* model = tflite::GetModel(model_data);// 创建解释器static tflite::MicroInterpreter static_interpreter(model, tflite::MicroOpResolver<6>(*model));// 配置张量内存static_interpreter.AllocateTensors();// 获取输入和输出张量指针TfLiteTensor* input = static_interpreter.input(0);TfLiteTensor* output = static_interpreter.output(0);// 运行推理static_interpreter.Invoke();// 处理输出// ...// 释放资源// ...
}int main() {// 读取模型数据// const uint8_t* model_data = ...// 运行 TensorFlow Lite 模型// run_tflite_model(model_data, model_size);return 0;
}
```

请注意,上述代码仅展示了如何加载和运行 TensorFlow Lite 模型的方法,实际应用中需要集成人脸检测和识别模型,并根据实际需求进行相应的预处理和后处理。

5. 性能评估和优化
在实际运行中,可以使用定时器来测量人脸特征提取和匹配的时间。根据具体需求和性能要求,可以对神经网络模型进行量化和剪枝,以减小模型的尺寸和计算量。
此外,可以利用 STM32F7 的硬件加速模块(如 DSP)来加速计算。还可以采用并行处理或流水线处理的方法,同时处理多个图像,提高系统的实时性能。

结论:
本文介绍了如何使用 STM32F7 和神经网络实现实时人脸特征提取与匹配算法。我们讨论了 STM32F7 的硬件和软件准备,人脸特征提取和匹配算法的基本原理,并给出了相应的代码示例。
我们还讨论了系统的性能评估和优化的可能性。通过本文的指导,您可以在 STM32F7 上构建一个高性能的实时人脸识别系统。

嵌入式物联网的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而错失高薪offer。不过别担心,我为大家整理了一份150多G的学习资源,基本上涵盖了嵌入式物联网学习的所有内容。点击这里,0元领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦。 

​ 点击链接扫码进入嵌入式交流群 ​https://fss.mpay8.cn/article/dmrjinh2C6fjejm

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167822.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微机原理_3

一、单项选择题(本大题共15小题,每小题3分,共45分。在每小题给出的四个备选项中,选出一个正确的答案,请将选定的答案填涂在答题纸的相应位置上。) 在 8086 微机系统中&#xff0c;完成对指令译码操作功能的部件是&#xff08;)。 A. EU B. BIU C. SRAM D. DRAM 使计算机执行某…

【机器学习】聚类(一):原型聚类:K-means聚类

文章目录 一、实验介绍1. 算法流程2. 算法解释3. 算法特点4. 应用场景5. 注意事项 二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. Kmeans类a. 构造函数b. 闵可夫斯基距离c. 初始化簇心d. K-means聚类e. 聚类结果可视化 2. 辅助函数3. 主函数a. 命令…

ElasticSearch之虚拟内存

查看当前Linux系统中vm.max_map_count变量的值&#xff0c;命令如下&#xff1a; sysctl vm.max_map_count执行结果的样例&#xff0c;如下&#xff1a; vm.max_map_count 65530修改参数vm.max_map_count的值&#xff0c;命令如下&#xff1a; sysctl -w vm.max_map_count2…

数组题目: 665. 非递减数列、453. 最小移动次数使数组元素相等、283. 移动零、189. 旋转数组、396. 旋转函数

665. 非递减数列 题解&#xff1a; 题目要求一个非递减数列&#xff0c;我们可以考虑需要更改的情况&#xff1a; nums {4, 2, 5} 对于这个nums&#xff0c;由于2的出现导致非递减&#xff0c;更改的情况就是要么4调到<2&#xff0c;要么2调到4,5. nums {1, 4, 2, 5} …

人工智能-注意力机制之注意力汇聚:Nadaraya-Watson 核回归

查询&#xff08;自主提示&#xff09;和键&#xff08;非自主提示&#xff09;之间的交互形成了注意力汇聚&#xff1b; 注意力汇聚有选择地聚合了值&#xff08;感官输入&#xff09;以生成最终的输出。 本节将介绍注意力汇聚的更多细节&#xff0c; 以便从宏观上了解注意力机…

Lubuntu 23.10用户可使用LXQt 1.4桌面

导读在众多 Lubuntu 用户的要求下&#xff0c;Lubuntu 开发人员决定将 LXQt 1.4 桌面环境向后移植到最新的 Lubuntu 23.10 &#xff08;Mantic Minotaur&#xff09; 版本。 是的&#xff0c;您没看错&#xff0c;您现在可以使用官方的 Lubuntu Backports PPA&#xff08;个人软…

黑马点评笔记 分布式锁

文章目录 分布式锁基本原理和实现方式对比Redis分布式锁的实现核心思路实现分布式锁版本一Redis分布式锁误删情况说明解决Redis分布式锁误删问题分布式锁的原子性问题分布式锁-Redission分布式锁-redission可重入锁原理分布式锁-redission锁重试和WatchDog机制分布式锁-redissi…

01、Tensorflow实现二元手写数字识别

01、Tensorflow实现二元手写数字识别&#xff08;二分类问题&#xff09; 开始学习机器学习啦&#xff0c;已经把吴恩达的课全部刷完了&#xff0c;现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣&#xff0c;作为入门的素材非常合适。 基于Tensorflow 2.10.0 1、…

pandas获取年月第一天、最后一天,加一秒、加一天、午夜时间

Timestamp对象 # ts = pandas.Timestamp(year=2023, month=10, day=15, # hour=15, minute=5, second=50, tz="Asia/Shanghai") ts = pandas.Timestamp("2023-10-15 15:05:50", tz="Asia/Shanghai") # 2023-10-15 15:05…

数据丢失预防措施包括什么

数据丢失预防措施是保护企业或个人重要数据的重要手段。以下是一些有效的预防措施&#xff1a; 可以通过域之盾软件来实现数据防丢失&#xff0c;具体的功能包括&#xff1a; https://www.yuzhidun.cn/https://www.yuzhidun.cn/ 1、备份数据 定期备份所有重要数据&#xff0…

unittest指南——不拼花哨,只拼实用

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

centos7 docker开启认证的远程端口2376配置

docker开启2375会存在安全漏洞 暴露了2375端口的Docker主机。因为没有任何加密和认证过程&#xff0c;知道了主机IP以后&#xff0c;&#xff0c;任何人都可以管理这台主机上的容器和镜像&#xff0c;以前贪图方便&#xff0c;只开启了没有认证的docker2375端口&#xff0c;后…

代码随想录算法训练营第五十三天|1143.最长公共子序列 1035.不相交的线 53. 最大子序和

文档讲解&#xff1a;代码随想录 视频讲解&#xff1a;代码随想录B站账号 状态&#xff1a;看了视频题解和文章解析后做出来了 1143.最长公共子序列 class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:dp [[0] * (len(text2) 1) for _ i…

机器学习入门

简介 https://huggingface.co/是一个AI社区&#xff0c;类似于github的地位。它开源了许多机器学习需要的基础组件如&#xff1a;Transformers, Tokenizers等。 许多公司也在不断地往上面提交新的模型和数据集&#xff0c;利用它你可以获取以下内容&#xff1a; Datasets : 数…

hikariCP 数据库连接池配置

springBoot 项目默认自动使用 HikariCP &#xff0c;HikariCP 的性能比 alibaba/druid快。 一、背景 系统中多少个线程在进行与数据库有关的工作&#xff1f;其中&#xff0c;而多少个线程正在执行 SQL 语句&#xff1f;这可以让我们评估数据库是不是系统瓶颈。 多少个线程在…

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于法医调查优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

【学生成绩管理】数据库示例数据(MySQL代码)

【学生成绩管理】数据库示例数据&#xff08;MySQL代码&#xff09; 目录 【学生成绩管理】数据库示例数据&#xff08;MySQL代码&#xff09;一、创建数据库二、创建dept&#xff08;学院&#xff09;表1、创建表结构2、添加示例数据3、查看表中数据 三、创建stu&#xff08;学…

35.逻辑运算符

目录 一.什么是逻辑运算符 二.C语言中的逻辑运算符 三.逻辑表达式 三.视频教程 一.什么是逻辑运算符 同时对俩个或者俩个以上的表达式进行判断的运算符叫做逻辑运算符。 举例&#xff1a;比如去网吧上网&#xff0c;只有年满十八周岁并且带身份证才可以上网。在C语言中如果…

为什么 Flink 抛弃了 Scala

曾经红遍一时的Scala 想当初Spark横空出世之后&#xff0c;Scala简直就是语言界的一颗璀璨新星&#xff0c;惹得大家纷纷侧目&#xff0c;连Kafka这类技术框架也选择用Scala语言进行开发重构。 可如今&#xff0c;Flink竟然公开宣布弃用Scala 在Flink1.18的官方文档里&#x…

国家开放大学的学子们 练习题 走起!

试卷代号&#xff1a;1356 高级英语听说(2) 参考 试题 Section One (20 points, 2 points each) Directions: Listen to the conversation and fill in the blanks with the words you hear. Write the words on the Answer Sheet The conversation will be read TWICE. M…