黑马点评笔记 分布式锁

文章目录

    • 分布式锁
      • 基本原理和实现方式对比
      • Redis分布式锁的实现核心思路
      • 实现分布式锁版本一
      • Redis分布式锁误删情况说明
      • 解决Redis分布式锁误删问题
      • 分布式锁的原子性问题
      • 分布式锁-Redission
      • 分布式锁-redission可重入锁原理
      • 分布式锁-redission锁重试和WatchDog机制
      • 分布式锁-redission锁的MutiLock原理

分布式锁

基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

在这里插入图片描述

那么分布式锁他应该满足的条件呢?

可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思

互斥:互斥是分布式锁的最基本的条件,使得程序串行执行

高可用:程序不易崩溃,时时刻刻都保证较高的可用性

高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能

安全性:安全也是程序中必不可少的一环

常见的分布式锁有三种

  • Mysql:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见

  • Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁

  • Zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案

Redis分布式锁的实现核心思路

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:

    • 互斥:确保只能有一个线程获取锁
    • 非阻塞:尝试一次,成功返回true,失败返回false
  • 释放锁:

    • 手动释放
    • 超时释放:获取锁时添加一个超时时间

核心思路:

我们利用redis 的setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可

实现分布式锁版本一

  • 加锁逻辑

锁的基本接口

在这里插入图片描述

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性
我们的方法,是把存在线程中的用户的id作为redis中的中的键,这样我们就可以作为为每一个用户设置单独的锁,而且我们也会为每个锁设置单的过期时间从而防止死锁,具体代码,可以看下面:

private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {// 获取线程标示String threadId = Thread.currentThread().getId()// 获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);
}

Redis分布式锁误删情况说明

逻辑说明:

持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明

解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。

在这里插入图片描述

解决Redis分布式锁误删问题

需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标示(可以用UUID表示)
在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致

  • 如果一致则释放锁
  • 如果不一致则不释放锁

核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。

在这里插入图片描述
具体代码如下:加锁

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {// 获取线程标示String threadId = ID_PREFIX + Thread.currentThread().getId();// 获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);
}

释放锁

public void unlock() {// 获取线程标示String threadId = ID_PREFIX + Thread.currentThread().getId();// 获取锁中的标示String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);// 判断标示是否一致if(threadId.equals(id)) {// 释放锁stringRedisTemplate.delete(KEY_PREFIX + name);}
}

分布式锁的原子性问题

更为极端的误删逻辑说明:

线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的,我们要防止刚才的情况发生,

在这里插入图片描述
这个问题可以使用lua脚本实现,但是在java中我们一般会用redission这个第三方库。

分布式锁-Redission

引入依赖:

<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version>
</dependency>

配置Redisson客户端:

@Configuration
public class RedissonConfig {@Beanpublic RedissonClient redissonClient(){// 配置Config config = new Config();config.useSingleServer().setAddress("redis://192.168.150.101:6379").setPassword("123321");// 创建RedissonClient对象return Redisson.create(config);}
}

使用Redission的分布式锁

@Resource
private RedissionClient redissonClient;@Test
void testRedisson() throws Exception{//获取锁(可重入),指定锁的名称RLock lock = redissonClient.getLock("anyLock");//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);//判断获取锁成功if(isLock){try{System.out.println("执行业务");          }finally{//释放锁lock.unlock();}}}

业务代码更改
在 VoucherOrderServiceImpl

注入RedissonClient

@Resource
private RedissonClient redissonClient;@Override
public Result seckillVoucher(Long voucherId) {// 1.查询优惠券SeckillVoucher voucher = seckillVoucherService.getById(voucherId);// 2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀尚未开始!");}// 3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀已经结束!");}// 4.判断库存是否充足if (voucher.getStock() < 1) {// 库存不足return Result.fail("库存不足!");}Long userId = UserHolder.getUser().getId();//创建锁对象 这个代码不用了,因为我们现在要使用分布式锁//SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);RLock lock = redissonClient.getLock("lock:order:" + userId);//获取锁对象boolean isLock = lock.tryLock();//加锁失败if (!isLock) {return Result.fail("不允许重复下单");}try {//获取代理对象(事务)IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);} finally {//释放锁lock.unlock();}}

分布式锁-redission可重入锁原理

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。

在redission中,我们的也支持支持可重入锁

在分布式锁中,他采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式

这个地方一共有3个参数

KEYS[1] : 锁名称

ARGV[1]: 锁失效时间

ARGV[2]: id + “:” + threadId; 锁的小key

exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在

redis.call(‘hset’, KEYS[1], ARGV[2], 1);此时他就开始往redis里边去写数据 ,写成一个hash结构

Lock{

​ id + “:” + threadId : 1

}

如果当前这把锁存在,则第一个条件不满足,再判断

redis.call(‘hexists’, KEYS[1], ARGV[2]) == 1

此时需要通过大key+小key判断当前这把锁是否是属于自己的,如果是自己的,则进行

redis.call(‘hincrby’, KEYS[1], ARGV[2], 1)

将当前这个锁的value进行+1 ,redis.call(‘pexpire’, KEYS[1], ARGV[1]); 然后再对其设置过期时间,如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即为当前这把锁的失效时间

分布式锁-redission锁重试和WatchDog机制

抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同

1、先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null

2、判断当前这把锁是否是属于当前线程,如果是,则返回null

所以如果返回是null,则代表着当前已经抢锁完毕,或者可重入完毕,但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,同学们可以自行往下翻一点点,你能发现有个while( true) 再次进行tryAcquire进行抢锁

long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {return;
}

接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁的逻辑就是之前说的那三个逻辑

if (leaseTime != -1) {return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}

如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间 commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程

RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {if (e != null) {return;}// lock acquiredif (ttlRemaining == null) {scheduleExpirationRenewal(threadId);}
});
return ttlRemainingFuture;

此逻辑就是续约逻辑,注意看commandExecutor.getConnectionManager().newTimeout() 此方法

Method( new TimerTask() {},参数2 ,参数3 )

指的是:通过参数2,参数3 去描述什么时候去做参数1的事情,现在的情况是:10s之后去做参数一的事情

因为锁的失效时间是30s,当10s之后,此时这个timeTask 就触发了,他就去进行续约,把当前这把锁续约成30s,如果操作成功,那么此时就会递归调用自己,再重新设置一个timeTask(),于是再过10s后又再设置一个timerTask,完成不停的续约

那么大家可以想一想,假设我们的线程出现了宕机他还会续约吗?当然不会,因为没有人再去调用renewExpiration这个方法,所以等到时间之后自然就释放了。

private void renewExpiration() {ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());if (ee == null) {return;}Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {@Overridepublic void run(Timeout timeout) throws Exception {ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());if (ent == null) {return;}Long threadId = ent.getFirstThreadId();if (threadId == null) {return;}RFuture<Boolean> future = renewExpirationAsync(threadId);future.onComplete((res, e) -> {if (e != null) {log.error("Can't update lock " + getName() + " expiration", e);return;}if (res) {// reschedule itselfrenewExpiration();}});}}, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);ee.setTimeout(task);
}

分布式锁-redission锁的MutiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例

此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。

在这里插入图片描述

为了解决这个问题,redission提出来了MutiLock锁,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167815.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

01、Tensorflow实现二元手写数字识别

01、Tensorflow实现二元手写数字识别&#xff08;二分类问题&#xff09; 开始学习机器学习啦&#xff0c;已经把吴恩达的课全部刷完了&#xff0c;现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣&#xff0c;作为入门的素材非常合适。 基于Tensorflow 2.10.0 1、…

数据丢失预防措施包括什么

数据丢失预防措施是保护企业或个人重要数据的重要手段。以下是一些有效的预防措施&#xff1a; 可以通过域之盾软件来实现数据防丢失&#xff0c;具体的功能包括&#xff1a; https://www.yuzhidun.cn/https://www.yuzhidun.cn/ 1、备份数据 定期备份所有重要数据&#xff0…

unittest指南——不拼花哨,只拼实用

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

代码随想录算法训练营第五十三天|1143.最长公共子序列 1035.不相交的线 53. 最大子序和

文档讲解&#xff1a;代码随想录 视频讲解&#xff1a;代码随想录B站账号 状态&#xff1a;看了视频题解和文章解析后做出来了 1143.最长公共子序列 class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:dp [[0] * (len(text2) 1) for _ i…

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码

基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于法医调查算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于法医调查优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

windows11上安装WSL

Windows电脑上要配置linux&#xff08;这里指ubuntu&#xff09;开发环境&#xff0c;主要有三种方式&#xff1a; 1&#xff09;在windows上装个虚拟机&#xff08;比如vmware&#xff09;。缺点是vmware加载ubuntu后系统会变慢很多&#xff0c;而且需要通过samba来实现window…

计算机组成原理。3-408

1.动态存储和静态存储 2.双端口RAM 注意&#xff1a;cpu通过地址线和数据线读写数据时&#xff0c;不能同时写&#xff0c;但可以同时读&#xff0c;也不能一边读一边写。 3.多体并行存储器 分为高位存储和低位存储 小结 4.磁盘存储器的组成 5.磁盘的性能指标 磁盘读写寻道…

Vue中Slot的使用指南

目录 前言 什么是slot&#xff1f; 单个slot的使用 具名slot的使用 作用域插槽 总结 前言 在Vue中&#xff0c;slot是一种非常强大和灵活的功能&#xff0c;它允许你在组件模板中预留出一个或多个"插槽"&#xff0c;然后在使用这个组件的时候动态地填充内容。这…

TSINGSEE青犀智能分析网关道路积水识别AI算法方案

在各处的街道、路口等区域&#xff0c;及时发现道路积水问题&#xff0c;可以大大减少城市管理部门压力&#xff0c;及时处理&#xff0c;减少交通事故与人员摔倒事故。通过道路积水AI算法&#xff0c;能有效提高城市管理部门效率&#xff0c;优化城市管理方式。 那么&#xff…

【Web】PhpBypassTrick相关例题wp

目录 ①[NSSCTF 2022 Spring Recruit]babyphp ②[鹤城杯 2021]Middle magic ③[WUSTCTF 2020]朴实无华 ④[SWPUCTF 2022 新生赛]funny_php 明天中期考&#xff0c;先整理些小知识点冷静一下 ①[NSSCTF 2022 Spring Recruit]babyphp payload: a[]1&b1[]1&b2[]2&…

NLP的使用

参考&#xff1a; Apache openNLP 简介 - 链滴 (ld246.com) opennlp 模型下载地址&#xff1a;Index of /apache/opennlp/models/ud-models-1.0/ (tencent.com) OpenNLP是一个流行的开源自然语言处理工具包&#xff0c;它提供了一系列的NLP模型和算法。然而&#xff0c;Open…

【模拟开关CH440R】2022-1-20

资料模拟开关CH440芯片手册 - 百度文库 ch440R回来了&#xff0c;导通usb设备没问题&#xff0c;降压不影响。但是我发现个严重的问题&#xff0c;我的电路是直接通过4067控制ch440r接地&#xff0c;低电平&#xff0c;使能三个线路连一起的&#xff0c;邮箱的图您看看&#xf…

N-134基于java实现捕鱼达人游戏

开发工具eclipse,jdk1.8 文档截图&#xff1a; package com.qd.fish;import java.awt.Graphics; import java.io.File; import java.util.ArrayList; import java.util.List;import javax.imageio.ImageIO;public class Fishes {//定义一个集合来管理鱼List<Fish> fish…

五种多目标优化算法(NSDBO、NSGA3、MOGWO、NSWOA、MOPSO)求解微电网多目标优化调度(MATLAB代码)

一、多目标优化算法简介 &#xff08;1&#xff09;非支配排序的蜣螂优化算法NSDBO 多目标应用&#xff1a;基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度&#xff08;MATLAB&#xff09;-CSDN博客 &#xff08;2&#xff09;NSGA3 NSGA-III求解微电网多目标…

应用场景丨社区燃气管网监测系统建设

燃气作为现代社会的重要能源&#xff0c;燃气被广泛应用于居民生活、工业生产、商业服务等领域。然而&#xff0c;燃气泄漏事故时有发生&#xff0c;不仅给人们的生命财产安全带来严重威胁&#xff0c;也给燃气行业的发展带来不良影响。因此&#xff0c;对于燃气管道的监测和管…

给虚拟机配置静态id地址

1.令人头大的原因 当连接虚拟机的时候 地址不一会就改变&#xff0c;每次都要重新输入 2.配置虚拟机静态id地址 打开命令窗口执行 : vim /etc/sysconfig/network-scripts/ifcfg-ens33 按下面操作修改 查看自己子网掩码 3.重启网络 命令行输入 systemctl restart netwo…

【C语言】函数(四):函数递归与迭代,二者有什么区别

目录 前言递归定义递归的两个必要条件接受一个整型值&#xff08;无符号&#xff09;&#xff0c;按照顺序打印它的每一位使用函数不允许创建临时变量&#xff0c;求字符串“abcd”的长度求n的阶乘求第n个斐波那契数 迭代总结递归与迭代的主要区别用法不同结构不同时间开销不同…

毛利率创历史新高,三季度的小米拿出“新王牌”?

近日&#xff0c;小米正式发布了今年三季度的财报。财报数据显示&#xff0c;小米第三季度经调整净利润为59.9亿元人民币&#xff0c;同比增长182.9%&#xff0c;远超市场预期的48亿元。这其中&#xff0c;手机业务作为小米的基本盘一直是市场的关注焦点。今年三季度&#xff0…

vue3的基本使用(超详细)

一、初识vue3 1.vue3简介 2020年9月18日&#xff0c;vue3发布3.0版本&#xff0c;代号大海贼时代来临&#xff0c;One Piece特点&#xff1a; 无需构建步骤&#xff0c;渐进式增强静态的 HTML在任何页面中作为 Web Components 嵌入单页应用 (SPA)全栈 / 服务端渲染 (SSR)Jams…

搜索引擎语法

演示自定的Google hacking语法&#xff0c;解释含意以及在渗透过程中的作用 Google hacking site&#xff1a;限制搜索范围为某一网站&#xff0c;例如&#xff1a;site:baidu.com &#xff0c;可以搜索baidu.com 的一些子域名。 inurl&#xff1a;限制关键字出现在网址的某…