NLP的使用

参考:

Apache openNLP 简介 - 链滴 (ld246.com)

opennlp 模型下载地址:Index of /apache/opennlp/models/ud-models-1.0/ (tencent.com)

OpenNLP是一个流行的开源自然语言处理工具包,它提供了一系列的NLP模型和算法。然而,OpenNLP的官方发布版本并没有直接支持中文语言模型。但你可以通过以下步骤使用OpenNLP来处理中文文本: 1. 分词(Tokenization):由于OpenNLP没有中文分词模型,你可以考虑使用其他中文分词工具,如jieba或HanLP,来进行中文分词。 2. 词性标注(Part-of-Speech Tagging):OpenNLP提供了通用的词性标注模型,可以用于标注英文文本的词性。如果你需要对中文文本进行词性标注,可以尝试使用其他中文NLP工具,如HanLP。 3. 命名实体识别(Named Entity Recognition):OpenNLP提供了命名实体识别模型,可以用于英文文本。如果你需要对中文文本进行命名实体识别,可以考虑使用其他中文NLP工具,如HanLP。 需要注意的是,虽然OpenNLP是一个强大的NLP工具包,但它的官方版本并没有直接支持中文语言模型。因此,在处理中文文本时,建议选择专门针对中文的NLP工具,以获得更好的效果和准确性。

好吧,考虑下中文的NLP工具包

 参考:【精选】HanLP 自然语言处理使用总结-CSDN博客

添加依赖

<!--hanlp 依赖--><dependency><groupId>com.hankcs</groupId><artifactId>hanlp</artifactId><version>portable-1.8.4</version></dependency>

此时即可使用基本功能(除由字构词、依存句法分析外的全部功能)。如果需要使用全部功能还需下载词典和模型,下载地址:

http://nlp.hankcs.com/download.php?file=data

将下载后的data目录,拷贝至项目的 resources 目录下:

其中数据分为词典和模型,其中词典是词法分析必需的,模型是句法分析必需的,用户可以自行增删替换,如果不需要句法分析等功能的话,随时可以删除model文件夹。

下面还需要进行 HanLP 的配置,可以下载官方的配置模板:

http://nlp.hankcs.com/download.php?file=jar

解压后将 hanlp.properties文件拷贝至 resources 目录下,并修改下面配置:

测试例子:

其他例子还在学习中。。

嵌入(Embedding)是一种将高维向量映射到低维向量空间的技术,它在自然语言处理(NLP)中得到了广泛的应用。嵌入可以将词语或短语表示为低维向量,这些向量可以用于许多NLP任务,如文本分类、情感分析、命名实体识别等。

在NLP中,嵌入通常是通过训练神经网络来学习的。训练过程中,神经网络会将每个词语或短语表示为一个向量,并且这些向量应该能够捕捉到它们在语义空间中的相似性。例如,嵌入模型应该能够将“猫”和“狗”表示为相似的向量,因为它们在语义上具有相似之处。

常见的嵌入模型有Word2Vec、GloVe和FastText等。这些模型使用不同的算法和技术来生成词嵌入。Word2Vec和GloVe是两种流行的词嵌入模型,它们都是基于矩阵分解的方法。FastText是一种基于子词的词嵌入模型,它可以处理未登录词(Out-of-Vocabulary)问题。

在使用嵌入时,可以使用预训练的嵌入模型,也可以使用自己的数据集来训练嵌入模型。预训练的嵌入模型通常在大型语料库上训练,可以直接用于许多NLP任务。如果你的数据集与预训练模型的领域不同,你可以使用自己的数据集来训练嵌入模型,以生成更适合你的任务的嵌入。

NLP如何工作?

一般来说,NLP技术包括4个主要步骤:

  1. 词汇分析: 将一个句子分割成被称为 “标记” 的词或小单元的过程,以确定它的含义和它与整个句子的关系。
  2. 句法分析: 识别一个句子中不同的词和短语之间的关系,规范它们的结构,并以层次结构来表达这些关系的过程。
  3. 语义分析: 将句法结构,从短语、分句、句子和段落的层次到整个写作的层次,与它们的语言无关的含义联系起来的过程。
  4. 输出转换: 在对文本或语音进行语义分析的基础上,生成符合应用目标的输出的过程。

根据NLP的应用,输出将是一个翻译或完成一个句子,一个语法纠正,或基于规则或训练数据生成的反应。

自然语言实现一般都通过以下几个阶段:文本读取、分词、清洗、标准化、特征提取、建模。首先通过文本、新闻信息、网络爬虫等渠道获取大量的文字信息。然后利用分词工具对文本进行处理,把语句分成若干个常用的单词、短语,由于各国的语言特征有所区别,所以NLP也会有不同的库支撑。对分好的词库进行筛选,排除掉无用的符号、停用词等。再对词库进行标准化处理,比如英文单词的大小写、过去式、进行式等都需要进行标准化转换。然后进行特征提取,利用 tf-idf、word2vec 等工具包把数据转换成词向量。最后建模,利用机器学习、深度学习等成熟框架进行计算。

参考:【精选】NLP 自然语言处理实战_nlp项目实战_风尘浪子的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167794.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【模拟开关CH440R】2022-1-20

资料模拟开关CH440芯片手册 - 百度文库 ch440R回来了&#xff0c;导通usb设备没问题&#xff0c;降压不影响。但是我发现个严重的问题&#xff0c;我的电路是直接通过4067控制ch440r接地&#xff0c;低电平&#xff0c;使能三个线路连一起的&#xff0c;邮箱的图您看看&#xf…

N-134基于java实现捕鱼达人游戏

开发工具eclipse,jdk1.8 文档截图&#xff1a; package com.qd.fish;import java.awt.Graphics; import java.io.File; import java.util.ArrayList; import java.util.List;import javax.imageio.ImageIO;public class Fishes {//定义一个集合来管理鱼List<Fish> fish…

五种多目标优化算法(NSDBO、NSGA3、MOGWO、NSWOA、MOPSO)求解微电网多目标优化调度(MATLAB代码)

一、多目标优化算法简介 &#xff08;1&#xff09;非支配排序的蜣螂优化算法NSDBO 多目标应用&#xff1a;基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度&#xff08;MATLAB&#xff09;-CSDN博客 &#xff08;2&#xff09;NSGA3 NSGA-III求解微电网多目标…

应用场景丨社区燃气管网监测系统建设

燃气作为现代社会的重要能源&#xff0c;燃气被广泛应用于居民生活、工业生产、商业服务等领域。然而&#xff0c;燃气泄漏事故时有发生&#xff0c;不仅给人们的生命财产安全带来严重威胁&#xff0c;也给燃气行业的发展带来不良影响。因此&#xff0c;对于燃气管道的监测和管…

给虚拟机配置静态id地址

1.令人头大的原因 当连接虚拟机的时候 地址不一会就改变&#xff0c;每次都要重新输入 2.配置虚拟机静态id地址 打开命令窗口执行 : vim /etc/sysconfig/network-scripts/ifcfg-ens33 按下面操作修改 查看自己子网掩码 3.重启网络 命令行输入 systemctl restart netwo…

【C语言】函数(四):函数递归与迭代,二者有什么区别

目录 前言递归定义递归的两个必要条件接受一个整型值&#xff08;无符号&#xff09;&#xff0c;按照顺序打印它的每一位使用函数不允许创建临时变量&#xff0c;求字符串“abcd”的长度求n的阶乘求第n个斐波那契数 迭代总结递归与迭代的主要区别用法不同结构不同时间开销不同…

毛利率创历史新高,三季度的小米拿出“新王牌”?

近日&#xff0c;小米正式发布了今年三季度的财报。财报数据显示&#xff0c;小米第三季度经调整净利润为59.9亿元人民币&#xff0c;同比增长182.9%&#xff0c;远超市场预期的48亿元。这其中&#xff0c;手机业务作为小米的基本盘一直是市场的关注焦点。今年三季度&#xff0…

vue3的基本使用(超详细)

一、初识vue3 1.vue3简介 2020年9月18日&#xff0c;vue3发布3.0版本&#xff0c;代号大海贼时代来临&#xff0c;One Piece特点&#xff1a; 无需构建步骤&#xff0c;渐进式增强静态的 HTML在任何页面中作为 Web Components 嵌入单页应用 (SPA)全栈 / 服务端渲染 (SSR)Jams…

搜索引擎语法

演示自定的Google hacking语法&#xff0c;解释含意以及在渗透过程中的作用 Google hacking site&#xff1a;限制搜索范围为某一网站&#xff0c;例如&#xff1a;site:baidu.com &#xff0c;可以搜索baidu.com 的一些子域名。 inurl&#xff1a;限制关键字出现在网址的某…

【Spring】MyBatis的操作数据库

目录 一&#xff0c;准备工作 1.1 创建工程 1.2 准备数据 1.3 数据库连接字符串 1.4 创建持久层接口UserInfoMapper 1.5 单元测试 二&#xff0c;注解的基础操作 2.1 打印日志 2.2 参数传递 2.3 增&#xff08;Insert&#xff09; 2.4 删&#xff08;Delete&#x…

插件预热 | 且看安全小白如何轻松利用Goby插件快速上分

001 前言 各位师傅们好&#xff0c;首先强调一遍我可没做坏事&#xff0c;我只是想学技术&#xff0c;我有什么坏心思呢 回到正题&#xff0c;作为一个初学者&#xff0c;我想和大家分享一下我是如何利用 Goby 进行刷分的经历。大家都知道&#xff0c;刚开始学习的时候&…

Go 语言中的 Switch 语句详解

switch语句 使用switch语句来选择要执行的多个代码块中的一个。 在Go中的switch语句类似于C、C、Java、JavaScript和PHP中的switch语句。不同之处在于它只执行匹配的case&#xff0c;因此不需要使用break语句。 单一case的switch语法 switch 表达式 { case x:// 代码块 cas…

web前端开发基础------外边距折叠现象

引言 在设置样式时&#xff0c;需要遵循先整体再细节&#xff0c;先通用样式再特殊样式的顺序进行设置 一&#xff0c;什么是外边距折叠现象呢&#xff1f; 外边距折叠 定义&#xff1a; 外边距折叠是指相邻的两个或者多个外边距&#xff08;margin&#xff09;在垂直方向会合并…

老生常谈 - 从输入URL到页面加载的过程(详细版)

从输入URL到页面加载的过程 之前一直都是直接看一下总结的八股文章&#xff0c;对于实际的整个链路并不是特别熟悉&#xff0c;这次花了一天多的时间看了很多资料&#xff0c;对于整个页面加载的流程有了自己的理解&#xff0c;从前端开始访问的浏览器多线程、缓存等问题&#…

5-11一个球从100米自由落下

#include<stdio.h> int main(){double down100;double back down/2;int n;//次数for(n2;n<10;n){downdownback*2;backback/2; }printf("第10次落地经过%f米\n",down);printf("第10次反弹%f米\n",back);return 0;}

测试数据不会造?可以用这个工具Faker

在测试过程中&#xff0c;大家应该都遇到过各种各样的数据构造问题。e.g. 构造一批通讯录、构造一批用户三要素(姓名手机号身份证)、构造一批银行卡数据…… 这时候&#xff0c;测试数据大多数可能是这样的: 张三, 130 0000 0001 李四, 130 0000 0002 王五, 130 0000 0003 …

【C/PTA —— 11.函数2(课外实践)】

C/PTA —— 11.函数2&#xff08;课外实践&#xff09; 一.函数题6-1 计算A[n]1/(1 A[n-1])6-2 递归实现顺序输出整数6-3 自然数的位数(递归版)6-4 分治法求解金块问题6-5 汉诺塔6-6 重复显示字符(递归版)6-7 显示平行四边形(右)(递归版) 二.编程题7-2 N阶楼梯上楼问题 一.函数…

python实现存款日利息计算器(窗口界面形式)

输入存款金额&#xff0c;7日年化收益率&#xff0c;输出每日利息 完整源码如下&#xff1a; import tkinter as tk from tkinter import messageboxdef calculate_interest():deposit float(entry_deposit.get())interest_rate float(entry_interest_rate.get())daily_int…

【数据结构】二叉排序树(c风格、结合c++引用)

目录 1 基本概念 结构体定义 各种接口 2 二叉排序树的构建和中序遍历 递归版单次插入 非递归版单次插入 3 二叉排序树的查找 非递归版本 递归版本 4 二叉排序树的删除&#xff08;难点&#xff09; 1 基本概念 普通二叉排序树是一种简单的数据结构&#xff0c;节点的值…

Cortex-M与RISC-V区别

环境 Cortex-M以STM32H750为代表&#xff0c;RISC-V以芯来为代表 RTOS版本为RT-Thread 4.1.1 寄存器 RISC-V 常用汇编 RISC-V 关于STORE x4, 4(sp)这种寄存器前面带数字的写法&#xff0c;其意思为将x4的值存入sp4这个地址&#xff0c;即前面的数字表示偏移的意思 反之LOA…