set和map + multiset和multimap(使用+封装(RBTree))

set和map

  • 前言
  • 一、使用
    • 1. set
      • (1)、模板参数列表
      • (2)、常见构造
      • (3)、find和count
      • (4)、insert和erase
      • (5)、iterator
      • (6)、lower_bound和upper_bound
    • 2. multiset
    • 3. map
      • (1)、模板参数列表
      • (2)、构造
      • (3)、modifiers和operations
      • (4)、operator[]
    • 4. multimap
  • 二、封装
    • RBTree
      • 迭代器原理
      • RBTree实现代码
    • map
    • set
  • 三、总结

前言

本文介绍的是树型关联式容器。
关联式容器:用来存储数据,存储的是<key, value>结构的键值对,在检索时效率更高。主要有这四种:map,set,multimap,multiset。

键值对:用来标识具有一一对应关系的结构,该结构一般包含两个成员变量key和value,key表示键值,value表示与key对应的信息。

SGI—STL中关于键值对的定义:

//pair底层
template<class T1, class T2>
struct pair
{typedef T1 first_type;typedef T2 second_type;T1 first;T2 second;pair():first(T1()), second(T2()){}pair(const T1& a, const T2& b):first(a), second(b){}
};

一、使用

1. set

(1)、模板参数列表

模板参数列表

(2)、常见构造

void test_constructor()
{set<int> s1;                            //无参构造int arr[] = { 10,20,30,40,50 };set<int> s2(arr, arr + 5);              //数组范围构造set<int> s3(s2.begin(), s2.end());      //迭代器区间构造set<int> s4(s3);                        //拷贝构造
}

(3)、find和count

void test_find()
{set<int> s;s.insert(5);s.insert(10);s.insert(8);s.insert(2);//find return value: iterator(val is found)//otherwise set::end if (s.find(5) != s.end()){cout << "find:找到了" << endl;      }//count return value:1 (val is found),or 0 otherwiseif (s.count(5)){cout << "count:找到了" << endl;     }
}

(4)、insert和erase

void test_modify()
{//insert//去重+排序set<int> s;s.insert(10);s.insert(5);s.insert(6);s.insert(5);s.insert(5);s.insert(7);s.insert(2);for (auto e : s){cout << e << " ";     //2 5 6 7 10}cout << endl;//迭代器set<int>::iterator sit;pair<set<int>::iterator, bool> ret;   //接收插入返回值//pair<iterator, bool> insert(const value_type & val);        insert参数列表ret = s.insert(1);if (ret.second == true)sit = ret.first;cout << *sit << endl;    //1ret = s.insert(1);if (ret.second == false) sit = ret.first;cout << *sit << endl;    //1//iterator insert(iterator position, const value_type & val);  insert参数列表sit = s.insert(sit, 20);cout << *sit << endl;   //20//	template <class InputIterator>//void insert(InputIterator first, InputIterator last);        insert参数列表int arr[] = { 0,10,15 };            // 10 already in set, not inserteds.insert(arr, arr + 3);for (auto e : s){cout << e << " ";     //0 1 2 5 6 7 10 15 20}cout << endl;/////erase//void erase(iterator position);               erase参数列表s.erase(sit);    //*sit = 20//size_type erase(const value_type & val);     erase参数列表int e_ret = s.erase(0);cout << e_ret << endl;for (auto e : s){cout << e << " ";     //1 2 5 6 7 10 15}cout << endl;//void erase(iterator first, iterator last);   erase参数列表s.erase(s.begin(), s.end());for (auto e : s){cout << e << " ";     //empty}cout << endl;
}

(5)、iterator

void test_iteator()
{int arr[] = { 10,20,30,40,50 };set<int> s(arr, arr + 5);set<int>::iterator it = s.begin();set<int>::const_iterator cit = s.cbegin();set<int>::reverse_iterator rit = s.rbegin();set<int>::const_reverse_iterator crit = s.crbegin();while (it != s.end()){cout << *it << " ";   //10 20 30 40 50it++;}cout << endl;while (cit != s.cend()){cout << *cit << " ";   //10 20 30 40 50cit++;}cout << endl;while (rit != s.rend()){cout << *rit << " ";   //50 40 30 20 10rit++;}cout << endl;while (crit != s.crend()){cout << *crit << " ";  //50 40 30 20 10crit++;}cout << endl;
}

(6)、lower_bound和upper_bound

//iterator lower_bound(const value_type & val) const;                  lower_bound的声明
//iterator upper_bound(const value_type & val) const;                  upper_bound的声明
//pair<iterator, iterator> equal_range(const value_type& val) const;   equal_range的声明
void test_bound()
{set<int> s;set<int>::iterator itlow, itup;for (size_t i = 1; i < 10; i++){s.insert(i * 10);               //10 20 30 40 50 60 70 80 90}//左闭右开[30,70)itlow = s.lower_bound(30);itup = s.upper_bound(60);cout << *itlow << endl;        //30cout << *itup << endl;         //70set<int>::iterator it = s.lower_bound(35);//   s > 35cout << *it << endl;           //40//*it = 50;     //不能修改,保护键值s.erase(itlow, itup);for (auto e : s){cout << e << " ";             //10 20 70 80 90}cout << endl;////equal_range - most_use multiset//pair<set<int>::const_iterator, set<int>::const_iterator> auto ret1 = s.equal_range(15);itlow = ret1.first;itup = ret1.second;//因为不存在15,所以itlow和itup是一段不存在的区间cout << *itlow << endl;      //20   cout << *itup << endl;       //20   左开右闭auto ret2 = s.equal_range(80);itlow = ret2.first;itup = ret2.second;//[80,90)cout << *itlow << endl;     //80   cout << *itup << endl;      //90auto ret = s.equal_range(90);itlow = ret.first;itup = ret.second;//程序直接崩溃,到最后了cout << *itlow << endl;   //90     cout << *itup << endl;    //end()
}

2. multiset

这里的演示就不和set一样分开表示了,主要是multiset不去重

void test_multiset()
{//排序int arr[] = { 7, 7, 7, 3, 6, 5, 2, 3, 3, 3 };multiset<int> s(arr, arr + sizeof(arr) / sizeof(arr[0]));//不去重for (auto& e : s){cout << e << " ";}cout << endl;multiset<int>::iterator pos = s.find(3);  //返回中序遍历的第一个3while (pos != s.end())           //find失败返回end(){//*pos = 10;    //err  不能修改,保护键值cout << *pos << " ";++pos;}cout << endl;cout << s.count(3) << endl;   //4个3pair<multiset<int>::iterator, multiset<int>::iterator> ret = s.equal_range(7);multiset<int>::iterator itlow = ret.first;multiset<int>::iterator itup = ret.second;// [itlow, itup)// [7,end())  s.equal_range(7);//cout << *itlow << endl;//cout << *itup << endl;      //error   *itup没有值// [itlow, itup)// [5,5)  s.equal_range(4); ret = s.equal_range(4);itlow = ret.first;itup = ret.second;cout << *itlow << endl;cout << *itup << endl;       //oks.erase(itlow, itup);   //没有进行删除   [5, 5)for (auto e : s){cout << e << " ";}cout << endl;
}

3. map

(1)、模板参数列表

模板参数列表

(2)、构造

void test_constructor()
{map<string, string> dict;//"insert"和"插入"都分别有隐式类型转换,const char* 转成const string&//不能直接进行隐式类型转换,原因:多参数pair<string, string> kv1("insert", "插入");dict.insert(kv1);dict.insert(pair<string, string>("sort", "排序"));  //匿名对象//常用// C++98dict.insert(make_pair("string", "字符串"));// C++11 多参数的构造函数隐式类型转换dict.insert({ "string", "字符串" });   //{}会自动调用pair的构造// 隐式类型的转换  构造+拷贝构造(优化)string str1 = "hello";pair<string, string> kv2 = { "string", "字符串" };//const pair<string, string>& kv2 = { "string", "字符串" };  引用一个临时变量
}

(3)、modifiers和operations

void test_modifiers()
{map<string, string> dict;dict.insert(make_pair("string", "字符串"));dict.insert(make_pair("insert", "插入"));dict.insert(make_pair("success", "成功"));//key已经有了就不会插入    //pair<iterator,bool> insert (const value_type& val);  插入的参数列表pair<map<string, string>::iterator, bool> ret = dict.insert(make_pair("insert", "xxx"));if (ret.second == false) {cout << "element already existed:";cout << ret.first->first << ":" << ret.first->second << endl;}//iterator insert (iterator position, const value_type& val);                      插入的参数列表map<string, string>::iterator it = dict.begin();it = dict.insert(it, make_pair("begin", "开始"));  // max efficiency insertingcout << it->first << ":" << it->second << endl;/*template <class InputIterator>void insert(InputIterator first, InputIterator last);*/                             //插入的参数列表map<string, string> copymap;//iterator find (const key_type& k); //查找的参数列表,返回值是查找这个位置的迭代器,如果没查找到,返回end()copymap.insert(dict.begin(), dict.find("success"));        it = dict.begin();while (it != dict.end()){//it->first = "xxx";   //error//it->second = "sss";  //ok//cout << (*it).first << ":" << (*it).second << endl;cout << it->first << ":" << it->second << endl;++it;}cout << endl;int number = dict.erase("sucess");cout << number << endl;for (const auto& e : dict){cout << e.first << ":" << e.second << endl;}
}

(4)、operator[]

注意key不存在,operator[]是插入,at是抛异常

void test_operator()
{string arr[] = { "西瓜", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };map<string, int> countMap;for (const auto& e : arr){auto it = countMap.find(e);if (it == countMap.end()){countMap.insert(make_pair(e, 1));   //首次插入}else{it->second++;                       //统计次数}}//pair<map<char, int>::iterator, bool>::iterator it = this->insert(make_pair(k,mapped_type()))//(*(it.first)).secondfor (const auto& e : arr){//查找e是否存在,如果不存在进行插入,如果存在,返回valuecountMap[e]++;}for (const auto& kv : countMap){cout << kv.first << ":" << kv.second << endl;}
}

4. multimap

multimap和map的唯一不同,前者的key可以重复

二、封装

set和map的封装的底层结构使用的都是红黑树(这篇博客介绍了红黑树的旋转),在STL中set底层实际存储的数据是键值对< value, value >,这样就可以调用同个红黑树。

RBTree

迭代器原理

红黑树

双向迭代器 -> 根据红黑树的特征:

  1. 迭代器++,只需要判断当前位置的右侧节点的情况
  2. 迭代器- -,只需要判断当前位置的左侧节点的情况
  1. 迭代器++
  1. 右孩子不为空,访问右子树的最左节点(最小节点)。
  2. 右孩子为空,下一个访问的是孩子是父亲左的祖先节点。

代码实现:

Self& operator++()
{//右不为空if (_node->_right){//右子树的最左节点(右子树最小节点)Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else  //右为空{Node* cur = _node;Node* parent = cur->_parent;//父节点为空,或者当前节点不是父节点的左孩子,循环继续while (parent && cur == parent->_right){cur = parent;parent = parent->_parent;}//parent为空的情况和找到下一个节点的情况_node = parent;}return *this;
}
  1. 迭代器–
  1. 左孩子不为空,访问左子树的最右节点(最大节点)。
  2. 左孩子为空,下一个访问的是孩子是父亲右的祖先节点。
Self& operator--()
{//左孩子不为空if (_node->_left){Node* subRight = _node->_left;while (subRight->_right){subRight = subRight->_right;}_node = subRight;}else  //左孩子为空{ //孩子是父亲右的那个节点Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_left){cur = parent;parent = parent->_parent;}//parent为空的情况和找到下一个节点的情况_node = parent;}return *this;
}

RBTree实现代码

//节点的颜色
enum Color
{RED,BLACK
};//这里一个模板参数T就可以,这个T既是set的key,也是map的value
template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Color _color;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _color(RED){}
};//迭代器
template<class T, class Ptr, class Ref>
struct __TreeIterator
{typedef RBTreeNode<T> Node;typedef __TreeIterator<T, Ptr, Ref> Self;//无论被实例化成什么,都是普通迭代器typedef __TreeIterator<T, T*, T&> Iterator;//这个类被实列化成const迭代器时,这个函数是一个构造,支持普通迭代器构造const迭代器//这个类被实列化成普通迭代器时,这个函数是一个拷贝构造__TreeIterator(const Iterator& it):_node(it._node){}Node* _node;//节点初始化__TreeIterator(Node* node):_node(node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const Self& s){return _node != s._node;}Self& operator--(){if (_node->_left){Node* subRight = _node->_left;while (subRight->_right){subRight = subRight->_right;}_node = subRight;}else  { //孩子是父亲右的那个节点Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_left){cur = parent;parent = parent->_parent;}//parent为空的情况和找到下一个节点的情况_node = parent;}return *this;}Self& operator++(){//右不为空if (_node->_right){//右子树的最左节点(右子树最小节点)Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else  //右为空{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = parent->_parent;}//parent为空的情况和找到下一个节点的情况_node = parent;}return *this;}
};//set->RBTree<K, K, SetKeyOfT> _t;
//map->RBTree<K, pair<K, V>, MapKeyOfT> _t;//KeyOfT是上层传下来的仿函数
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef __TreeIterator<T, T*, T&> iterator;typedef __TreeIterator<T, const T*, const T&> const_iterator;iterator begin(){Node* leftMin = _root;while (leftMin && leftMin->_left){leftMin = leftMin->_left;}return iterator(leftMin);}iterator end(){//区分,这里和STL源码中的结束方式不同,return iterator(nullptr);}const_iterator begin() const{Node* leftMin = _root;while (leftMin && leftMin->_left){leftMin = leftMin->_left;}return iterator(leftMin);}const_iterator end() const{return iterator(nullptr);}//传K的作用Node* Find(const K& key){Node* cur = _root;KeyOfT kot;while (cur){if (kot(cur->_data) < key){cur = cur->_right;}else if (kot(cur->_data) > key){cur = cur->_left;}else{return cur;}}//没找到,返回nullptrreturn nullptr;}//注意insert的返回值是一个键值对pair<iterator, bool> Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_color = BLACK;return make_pair(iterator(_root), true);}//寻找要链接新节点的位置Node* parent = nullptr;Node* cur = _root;KeyOfT kot;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return make_pair(iterator(cur), false);}}//插入节点 + 链接cur = new Node(data);cur->_color = RED;//保存节点,用于返回Node* newnode = cur;if (kot(parent->_data) > kot(data)){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;//调整   这里parent是否为空,是为了下一次循环判断//       如果parent->_color == BLACK也不用玩了while (parent && parent->_color == RED){Node* grandfather = parent->_parent;if (grandfather->_left == parent){Node* uncle = grandfather->_right;//u为红if (uncle && uncle->_color == RED){parent->_color = uncle->_color = BLACK;grandfather->_color = RED;//继续向上调整cur = grandfather;parent = cur->_parent;}else //u不存在 或 存在且为黑{if (cur == parent->_left){//      g//   p//cRotateR(grandfather);parent->_color = BLACK;grandfather->_color = RED;}else{//      g//   p//      c	RotateL(parent);RotateR(grandfather);cur->_color = BLACK;grandfather->_color = RED;}//调整完之后,就不需要继续改变了break;}}else   //grandfather->_right == parent{Node* uncle = grandfather->_left;//u为红if (uncle && uncle->_color == RED){parent->_color = uncle->_color = BLACK;grandfather->_color = RED;//继续向上调整cur = grandfather;parent = cur->_parent;}else //u不存在 或 存在且为黑{if (cur == parent->_right){//g//   p//      cRotateL(grandfather);parent->_color = BLACK;grandfather->_color = RED;}else{//g//   p//c	RotateR(parent);RotateL(grandfather);cur->_color = BLACK;grandfather->_color = RED;}//调整完之后,就不需要继续改变了break;}}}//根节点的颜色改成黑色_root->_color = BLACK;return make_pair(iterator(newnode), true);}//判断该树是不是红黑树bool IsBalance(){return _IsBalance(_root);}//计算红黑树的高度int Height(){return Height(_root);}private:int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool CheckColor(Node* root, int blacknum, int benchmark){if (root == nullptr){if (blacknum != benchmark){return false;}return true;}//计算每条路径的黑色节点if (root->_color == BLACK){++blacknum;}if (root->_color == RED && root->_parent && root->_parent->_color == RED){cout << root->_kv.first << "出现连续红色节点" << endl;return false;}return CheckColor(root->_left, blacknum, benchmark)&& CheckColor(root->_right, blacknum, benchmark);}bool _IsBalance(Node* root){if (root == nullptr){return true;}if (root->_color != BLACK){return false;}//基准值 -->  用于比较别的路径黑色节点个数int benchmark = 0;Node* cur = _root;while (cur){if (cur->_color == BLACK)benchmark++;cur = cur->_left;}return CheckColor(root, 0, benchmark);}//旋转//都是二叉树的旋转,所以和AVLTree的旋转一样,只不过这里没有平衡因子void RotateR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright)curright->_parent = parent;Node* ppnode = parent->_parent;cur->_right = parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}void RotateL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;//重新链接parent->_right = curleft;if (curleft)curleft->_parent = parent;cur->_left = parent;//提前保存parent->_parent,可能是根节点,也可能是子树的根节点Node* ppnode = parent->_parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}private:Node* _root = nullptr;
};

map

namespace kpl
{template<class K, class V>class map{//RBTree仿函数的主要作用在这里,set的封装只是跟跑struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin() const{return _t.begin();}const_iterator end() const{return _t.end();}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}pair<iterator, bool> insert(const pair<const K, V>& kv){return _t.Insert(kv);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}

set

namespace kpl
{template<class K>class set{//仿函数struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;//set只保留一个const即可const_iterator begin() const{return _t.begin();}const_iterator end() const{return _t.end();}pair<iterator, bool> insert(const K& key){//这里返回值的first的迭代器是普通迭代器,用普通迭代器接收pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(key);//使用普通迭代器构造一个const的迭代器,这里就体现出迭代器实现中的那个拷贝构造return pair<iterator, bool>(ret.first, ret.second);}private:RBTree<K, K, SetKeyOfT> _t;};
}

三、总结

set

  1. 插入的元素只需要value,不用键值对
  2. set中的元素不能重复(set可以去重)
  3. 单个元素的访问速度比unordered_set慢
  4. 中序遍历有序,使用其迭代器访问也是有序
  5. 不允许修改,破坏结构

map

  1. map中的元素是键值对
  2. map中的key是唯一的,不能修改,但是value可以修改
  3. 中序遍历有序,使用其迭代器访问也是有序
  4. 支持operator[]
  5. 单个元素的访问速度比unordered_set慢

multiset和multimap(区分set和map)
multiset的value可以重复,multimap的key也可以重复

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167755.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9.输出国际象棋盘【2023.11.24】

1.问题描述 要求输出国际象棋棋盘。 2.解决思路 国际象棋棋盘由64个黑白相间的格子组成&#xff0c;分为8行*8列。用i控制行&#xff0c;j控制列&#xff0c;根据ij的和的变化来控制输出黑方格还是白方格。 3.代码实现 #include<stdio.h> int main(){for(int i0;i&…

各操作系统之间的关系

请移步知乎&#xff1a; 操作系统UNIX、WINDOWS、LINUX、MC OS的联系与区别 - 知乎 (zhihu.com) 移动端的android操作系统就人尽皆知啦&#xff0c;基于linux内核。 完毕。 适用领域&#xff1a; windows,macos:主要面向个人计算机市场 Linux、Windows Server:随着互联网的…

基于广义正态分布算法优化概率神经网络PNN的分类预测 - 附代码

基于广义正态分布算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于广义正态分布算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于广义正态分布优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xf…

网络安全—自学

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高&#xff1b; 二、则是发展相对成熟…

深度学习之基于Pytorch照片图像转漫画风格网络系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 以下是一个基本的设计介绍&#xff1a; 数据准备&#xff1a;收集足够的真实照片和漫画图像&#xff0c;用于训练模…

typora中的快捷键shift enter 和 enter的交换

1 问题&#xff1a; 我最近在用 typora 进行写作&#xff0c;但是在合格 typora 的 markdown 编辑器很奇怪&#xff0c;它的一个回车符是两次换行&#xff0c;而用 shfit ent 找了半天都不知道怎么解决的这个问题&#xff0c;然后我就去了这个 typora 在 github 开源的问题仓库…

hive 报错return code 40000 from org.apache.hadoop.hive.ql.exec.MoveTask解决思路

参考学习 https://github.com/apache/hive/blob/2b57dd27ad61e552f93817ac69313066af6562d9/ql/src/java/org/apache/hadoop/hive/ql/ErrorMsg.java#L47 为啥学习error code 开发过程中遇到以下错误&#xff0c;大家觉得应该怎么办&#xff1f;从哪方面入手呢&#xff1f; 1.百…

解决在Windows10或Windows11下无权限修改hosts文件

解决在Windows10或Windows11下无权限修改hosts文件&#xff0c;无法写入内容 1、首先在开始菜单中找到这个 2、接着输入&#xff1a; C:\Windows\System32\drivers\etc3、再次输入以下命令行&#xff1a;notepad hosts &#xff0c;并回车&#xff1a; notepad hosts 4、然后…

DataFunSummit:2023年现代数据栈技术峰会-核心PPT资料下载

一、峰会简介 现代数据栈&#xff08;Modern Data Stack&#xff09;是一种集合了多种技术和工具的软件基础设施&#xff0c;旨在更好地管理和处理数据&#xff0c;并为企业提供数据驱动的洞察和决策。包含以下几个组件&#xff1a;数据采集、数据处理、数据存储、数据查询和分…

区块链技术与应用 【全国职业院校技能大赛国赛题目解析】第四套区块链应用后端开发

第四套区块链应用后端开发 环境 : ubuntu20 fisco : 2.8.0 springboot 2.1.1 fisco-java-sdk: 2.7.2 maven 3.8.8 前言 这套后端样题,只涉及调用fisco的系统接口,不涉及此食品溯源项目的业务接口,所以我就直接生成一个springboot项目进行完成此题目。 请提前准备好一…

Docker的项目资源参考

Docker的项目资源包括以下内容&#xff1a; Docker官方网站&#xff1a;https://www.docker.com/ Docker Hub&#xff1a;https://hub.docker.com/ Docker文档&#xff1a;https://docs.docker.com/ Docker GitHub仓库&#xff1a;https://github.com/docker Docker官方博客…

Unity中Shader的Standard材质解析(二)

文章目录 前言一、我们对 Standard 的 PBR 的 GI 进行解析1、我们先创建一个PBR的.cginc文件&#xff0c;用于整理用到的函数2、然后在Standard的Shader中引用该cginc文件 二、依次整理函数到该cginc文件中我们来看一下PBR中GI的镜面反射做了些什么 二、最终代码.cginc代码&…

OpenGL 绘制旋转球(Qt)

文章目录 一、简介二、实现代码三、实现效果一、简介 这里其实就是指三个互相垂直的三个圆形,正好之前已经完成了圆形平面的绘制,那么这里就需要对之前的圆形进行一些改造,使得它们可以以任意一种姿态在OpenGL中进行绘制(添加变换矩阵)。 这里同样对其进行封装,具体内容如…

【教学类-06-07】20231124 (55格版)X-X之间的加法、减法、加减混合题

背景需求 在大四班里&#xff0c;预测试55格“5以内、10以内、20以内的加法题、减法题、加减混合题”的“实用性”。 由于只打印一份20以内加法减法混合题。 “这套20以内的加减法最难”&#xff0c;我询问谁会做&#xff08;摸底幼儿的水平&#xff09; 有两位男孩举手想挑…

joplin笔记同步 到腾讯云S3

创建存储桶 打开腾讯云的存储桶列表&#xff0c;点击“创建存储桶”&#xff0c;输入名称&#xff0c;选择地域&#xff08;建议选择离自己较近的地域以降低访问时延&#xff09;和访问权限&#xff08;建议选择“私有读写”&#xff09;。 s3 存储桶&#xff1a; 存储桶的名称…

【经典小练习】简单的文件加密解密

文章目录 &#x1f339;什么是文件加密⭐应用场景 &#x1f6f8;案例&#x1f33a;描述&#x1f33a;代码 &#x1f339;什么是文件加密 Java文件加密是指使用Java编程语言和相关的加密算法对文件进行加密处理。通过这种方式&#xff0c;可以将文件内容转换为一种非常规的形式…

Halcon Solution Guide I basics(4): Blob Analysis(连通性解析)

文章目录 文章专栏前言文章解析开头步骤分析简单案例进阶方案 进阶代码案例crystal&#xff0c;结晶匹配需求分析 文章专栏 Halcon开发 Halcon学习 练习项目gitee仓库 CSDN Major 博主Halcon文章推荐 前言 今天来看第三章内容&#xff0c;既然是零基础&#xff0c;而且我还有大…

希宝猫罐头怎么样?专业人士告诉你口碑好的猫罐头推荐

作为一个从业宠物营养师7年的人&#xff0c;可以说对于猫咪的食物很有研究和猫罐头品牌选购上&#xff0c;我有自己的见解。那么希宝猫罐头怎么样呢&#xff1f; 希宝猫罐头采用了先进的加工工艺&#xff0c;注重产品的包装和密封性&#xff0c;其包装设计简洁时尚&#xff0c…

Java定时任务 ScheduledThreadPoolExecutor

ScheduledThreadPoolExecutor 的创建 ScheduledThreadPoolExecutor executorService new ScheduledThreadPoolExecutor(1, // 核心线程数new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d") // 线程命名规则.daemon(true) // 设置线程为…

STM32 中断系统

单片机学习 目录 文章目录 前言 一、中断系统 1.1 什么是中断 1.2 中断优先级 1.3 中断嵌套 1.4 C语言中的中断程序 二、STM32的中断通道和中断向量 2.1 中断通道 2.2 嵌套向量中断控制器NVIC 2.2.1 什么是NVIC 2.2.2 NVIC基本结构 2.2.3抢占优先级和响应优先级 2.2.4 NVIC的优…