Unity中Shader的Standard材质解析(二)

文章目录

  • 前言
  • 一、我们对 Standard 的 PBR 的 GI 进行解析
    • 1、我们先创建一个PBR的.cginc文件,用于整理用到的函数
    • 2、然后在Standard的Shader中引用该cginc文件
  • 二、依次整理函数到该cginc文件中
    • 我们来看一下PBR中GI的镜面反射做了些什么
  • 二、最终代码
    • .cginc代码:
    • Shader代码:


前言

Unity中Shader的Standard材质解析(二),对 Standard 的 PBR 的 GI 进行解析

  • Unity中Shader的Standard材质解析(一)

一、我们对 Standard 的 PBR 的 GI 进行解析

在这里插入图片描述

1、我们先创建一个PBR的.cginc文件,用于整理用到的函数

在这里插入图片描述

2、然后在Standard的Shader中引用该cginc文件

#include “CGInclude/MyPhysicallyBasedRendering.cginc”


二、依次整理函数到该cginc文件中

  • 整理 LightingStandard_GI1(o, giInput, gi); 中的数据

在这里插入图片描述

  • Unity_GlossyEnvironmentData表示GI中的反射准备数据

在这里插入图片描述

  • 准备好反射数据后,计算得出GI中的 漫反射 和 镜面反射

在这里插入图片描述

  • 输出漫反射看看效果

在这里插入图片描述
在这里插入图片描述

  • 输出镜面反射看看效果

在这里插入图片描述

在这里插入图片描述

  • 我们可以自定义一下Cubemap,看看不同的反射效果

(这就是PBR的优点,可以根据不同的环境,直接呈现效果,不用再根据环境调节参数)

请添加图片描述

我们来看一下PBR中GI的镜面反射做了些什么

  • 这个程序块只会在,反射探针中开启Box Projection时,才会运行

在这里插入图片描述
在这里插入图片描述
这选项的作用是:使用反射探针的物体在移动时,效果不会变,只有在摄像机方向变时,效果才会变化。那么,要让物体动时,反射效果同时改变的话,就需要开启该选项。

  • 在取消了材质的Reflection后,会运行该程序块
  • 反之,运行之后的部分

在这里插入图片描述

在这里插入图片描述

  • 在开启反射效果后,对于感性粗糙度的计算。
  • 在Unity中的粗糙度,使用分级贴图来模拟粗糙度(节省性能)

在这里插入图片描述

  • 由于粗糙度与反射探针的mip变化不呈现线性正比,所以需要一个公式来改变

//r = r * (1.7 - 0.7r)
perceptualRoughness = perceptualRoughness
(1.7 - 0.7*perceptualRoughness);

在这里插入图片描述

在Blender中,粗糙度是按数值改变的:
请添加图片描述

在Unity中,反射探针是按贴图分级来模拟的粗糙度:

请添加图片描述

在这里插入图片描述


二、最终代码

.cginc代码:

#ifndef MYPHYSICALLYBASERENDERING_INCLUDE#define MYPHYSICALLYBASERENDERING_INCLUDEhalf3 Unity_GlossyEnvironment1 (UNITY_ARGS_TEXCUBE(tex), half4 hdr, Unity_GlossyEnvironmentData glossIn){half perceptualRoughness = glossIn.roughness /* perceptualRoughness */ ;// TODO: CAUTION: remap from Morten may work only with offline convolution, see impact with runtime convolution!// For now disabled#if 0float m = PerceptualRoughnessToRoughness(perceptualRoughness); // m is the real roughness parameterconst float fEps = 1.192092896e-07F;        // smallest such that 1.0+FLT_EPSILON != 1.0  (+1e-4h is NOT good here. is visibly very wrong)float n =  (2.0/max(fEps, m*m))-2.0;        // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdfn /= 4;                                     // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.htmlperceptualRoughness = pow( 2/(n+2), 0.25);      // remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness)#else// MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.//r = r * (1.7 - 0.7*r)//由于粗糙度与反射探针的mip变化不呈现线性正比,所以需要一个公式来改变perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness);#endif//UNITY_SPECCUBE_LOD_STEPS = 6,表示反射探针的mip级别有 6 档。粗糙度X6得到最终得mip级别half mip = perceptualRoughnessToMipmapLevel(perceptualRoughness);half3 R = glossIn.reflUVW;half4 rgbm = UNITY_SAMPLE_TEXCUBE_LOD(tex, R, mip);return DecodeHDR(rgbm, hdr);}//GI中的镜面反射inline half3 UnityGI_IndirectSpecular1(UnityGIInput data, half occlusion, Unity_GlossyEnvironmentData glossIn){half3 specular;//如果开启了反射探针的Box Projection#ifdef UNITY_SPECCUBE_BOX_PROJECTION// we will tweak reflUVW in glossIn directly (as we pass it to Unity_GlossyEnvironment twice for probe0 and probe1), so keep original to pass into BoxProjectedCubemapDirectionhalf3 originalReflUVW = glossIn.reflUVW;glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[0], data.boxMin[0], data.boxMax[0]);#endif#ifdef _GLOSSYREFLECTIONS_OFFspecular = unity_IndirectSpecColor.rgb;#elsehalf3 env0 = Unity_GlossyEnvironment1 (UNITY_PASS_TEXCUBE(unity_SpecCube0), data.probeHDR[0], glossIn);//如果开启了反射探针混合#ifdef UNITY_SPECCUBE_BLENDINGconst float kBlendFactor = 0.99999;float blendLerp = data.boxMin[0].w;UNITY_BRANCHif (blendLerp < kBlendFactor){#ifdef UNITY_SPECCUBE_BOX_PROJECTIONglossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[1], data.boxMin[1], data.boxMax[1]);#endifhalf3 env1 = Unity_GlossyEnvironment (UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1,unity_SpecCube0), data.probeHDR[1], glossIn);specular = lerp(env1, env0, blendLerp);}else{specular = env0;}#elsespecular = env0;#endif#endifreturn specular * occlusion;}inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld){return UnityGI_Base(data, occlusion, normalWorld);}//GI计算inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld, Unity_GlossyEnvironmentData glossIn){//计算得出GI中的漫反射UnityGI o_gi = UnityGI_Base(data, occlusion, normalWorld);//计算得出GI中的镜面反射o_gi.indirect.specular = UnityGI_IndirectSpecular1(data, occlusion, glossIn);return o_gi;}float SmoothnessToPerceptualRoughness1(float smoothness){return (1 - smoothness);}Unity_GlossyEnvironmentData UnityGlossyEnvironmentSetup1(half Smoothness, half3 worldViewDir, half3 Normal, half3 fresnel0){Unity_GlossyEnvironmentData g;//粗糙度g.roughness /* perceptualRoughness */   = SmoothnessToPerceptualRoughness1(Smoothness);//反射球的采样坐标g.reflUVW   = reflect(-worldViewDir, Normal);return g;}//PBR光照模型的GI计算inline void LightingStandard_GI1(SurfaceOutputStandard s,UnityGIInput data,inout UnityGI gi){//如果是延迟渲染PASS并且开启了延迟渲染反射探针的话#if defined(UNITY_PASS_DEFERRED) && UNITY_ENABLE_REFLECTION_BUFFERSgi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal);#else//Unity_GlossyEnvironmentData表示GI中的反射准备数据Unity_GlossyEnvironmentData g = UnityGlossyEnvironmentSetup1(s.Smoothness, data.worldViewDir, s.Normal,lerp(unity_ColorSpaceDielectricSpec.rgb, s.Albedo,s.Metallic));//进行GI计算并返回输出gigi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal, g);#endif}#endif

Shader代码:

//Standard材质
Shader "MyShader/P2_2_5"
{Properties{_Color ("Color", Color) = (1,1,1,1)_MainTex ("Albedo (RGB)", 2D) = "white" {}[NoScaleOffset]_MetallicTex("Metallic(R) Smoothness(G) AO(B)",2D) = "white" {}[NoScaleOffset][Normal]_NormalTex("NormalTex",2D) = "bump" {}_Glossiness ("Smoothness", Range(0,1)) = 0.0_Metallic ("Metallic", Range(0,1)) = 0.0_AO("AO",Range(0,1)) = 1.0}SubShader{Tags{"RenderType"="Opaque"}LOD 200// ---- forward rendering base pass:Pass{Name "FORWARD"Tags{"LightMode" = "ForwardBase"}CGPROGRAM// compile directives#pragma vertex vert#pragma fragment frag#pragma target 3.0#pragma multi_compile_instancing#pragma multi_compile_fog#pragma multi_compile_fwdbase#include "UnityCG.cginc"#include "Lighting.cginc"#include "UnityPBSLighting.cginc"#include "AutoLight.cginc"#include "CGInclude/MyPhysicallyBasedRendering.cginc"sampler2D _MainTex;float4 _MainTex_ST;half _Glossiness;half _Metallic;fixed4 _Color;sampler2D _MetallicTex;half _AO;sampler2D _NormalTex;struct appdata{float4 vertex : POSITION;float4 tangent : TANGENT;float3 normal : NORMAL;float4 texcoord : TEXCOORD0;float4 texcoord1 : TEXCOORD1;float4 texcoord2 : TEXCOORD2;float4 texcoord3 : TEXCOORD3;fixed4 color : COLOR;UNITY_VERTEX_INPUT_INSTANCE_ID};// vertex-to-fragment interpolation data// no lightmaps:struct v2f{float4 pos : SV_POSITION;float2 uv : TEXCOORD0; // _MainTexfloat3 worldNormal : TEXCOORD1;float3 worldPos : TEXCOORD2;#if UNITY_SHOULD_SAMPLE_SHhalf3 sh : TEXCOORD3; // SH#endif//切线空间需要使用的矩阵float3 tSpace0 : TEXCOORD4;float3 tSpace1 : TEXCOORD5;float3 tSpace2 : TEXCOORD6;UNITY_FOG_COORDS(7)UNITY_SHADOW_COORDS(8)};// vertex shaderv2f vert(appdata v){v2f o;o.pos = UnityObjectToClipPos(v.vertex);o.uv.xy = TRANSFORM_TEX(v.texcoord, _MainTex);float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;float3 worldNormal = UnityObjectToWorldNormal(v.normal);//世界空间下的切线half3 worldTangent = UnityObjectToWorldDir(v.tangent);//切线方向half tangentSign = v.tangent.w * unity_WorldTransformParams.w;//世界空间下的副切线half3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign;//切线矩阵o.tSpace0 = float3(worldTangent.x, worldBinormal.x, worldNormal.x);o.tSpace1 = float3(worldTangent.y, worldBinormal.y, worldNormal.y);o.tSpace2 = float3(worldTangent.z, worldBinormal.z, worldNormal.z);o.worldPos.xyz = worldPos;o.worldNormal = worldNormal;// SH/ambient and vertex lights#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELo.sh = 0;// Approximated illumination from non-important point lights#ifdef VERTEXLIGHT_ONo.sh += Shade4PointLights (unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,unity_4LightAtten0, worldPos, worldNormal);#endifo.sh = ShadeSHPerVertex (worldNormal, o.sh);#endifUNITY_TRANSFER_LIGHTING(o, v.texcoord1.xy);UNITY_TRANSFER_FOG(o, o.pos); // pass fog coordinates to pixel shaderreturn o;}// fragment shaderfixed4 frag(v2f i) : SV_Target{UNITY_EXTRACT_FOG(i);float3 worldPos = i.worldPos.xyz;float3 worldViewDir = normalize(UnityWorldSpaceViewDir(worldPos));SurfaceOutputStandard o;UNITY_INITIALIZE_OUTPUT(SurfaceOutputStandard, o);fixed4 mainTex = tex2D(_MainTex, i.uv);o.Albedo = mainTex.rgb * _Color;o.Emission = 0.0;fixed4 metallicTex = tex2D(_MetallicTex, i.uv);o.Metallic = metallicTex.r * _Metallic;o.Smoothness = metallicTex.g * _Glossiness;o.Occlusion = metallicTex.b * _AO;o.Alpha = 1;half3 normalTex = UnpackNormal(tex2D(_NormalTex,i.uv));half3 worldNormal = half3(dot(i.tSpace0,normalTex),dot(i.tSpace1,normalTex),dot(i.tSpace2,normalTex));o.Normal = worldNormal;// compute lighting & shadowing factorUNITY_LIGHT_ATTENUATION(atten, i, worldPos)// Setup lighting environmentUnityGI gi;UNITY_INITIALIZE_OUTPUT(UnityGI, gi);gi.indirect.diffuse = 0;gi.indirect.specular = 0;gi.light.color = _LightColor0.rgb;gi.light.dir = _WorldSpaceLightPos0.xyz;// Call GI (lightmaps/SH/reflections) lighting functionUnityGIInput giInput;UNITY_INITIALIZE_OUTPUT(UnityGIInput, giInput);giInput.light = gi.light;giInput.worldPos = worldPos;giInput.worldViewDir = worldViewDir;giInput.atten = atten;#if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)giInput.lightmapUV = IN.lmap;#elsegiInput.lightmapUV = 0.0;#endif#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELgiInput.ambient = i.sh;#elsegiInput.ambient.rgb = 0.0;#endifgiInput.probeHDR[0] = unity_SpecCube0_HDR;giInput.probeHDR[1] = unity_SpecCube1_HDR;#if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)giInput.boxMin[0] = unity_SpecCube0_BoxMin; // .w holds lerp value for blending#endif#ifdef UNITY_SPECCUBE_BOX_PROJECTIONgiInput.boxMax[0] = unity_SpecCube0_BoxMax;giInput.probePosition[0] = unity_SpecCube0_ProbePosition;giInput.boxMax[1] = unity_SpecCube1_BoxMax;giInput.boxMin[1] = unity_SpecCube1_BoxMin;giInput.probePosition[1] = unity_SpecCube1_ProbePosition;#endifLightingStandard_GI1(o, giInput, gi);//return fixed4(gi.indirect.specular,1);// PBS的核心计算fixed4 c = LightingStandard(o, worldViewDir, gi);UNITY_APPLY_FOG(_unity_fogCoord, c); // apply fogUNITY_OPAQUE_ALPHA(c.a); //把c的Alpha置1return c;}ENDCG}}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167740.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【教学类-06-07】20231124 (55格版)X-X之间的加法、减法、加减混合题

背景需求 在大四班里&#xff0c;预测试55格“5以内、10以内、20以内的加法题、减法题、加减混合题”的“实用性”。 由于只打印一份20以内加法减法混合题。 “这套20以内的加减法最难”&#xff0c;我询问谁会做&#xff08;摸底幼儿的水平&#xff09; 有两位男孩举手想挑…

joplin笔记同步 到腾讯云S3

创建存储桶 打开腾讯云的存储桶列表&#xff0c;点击“创建存储桶”&#xff0c;输入名称&#xff0c;选择地域&#xff08;建议选择离自己较近的地域以降低访问时延&#xff09;和访问权限&#xff08;建议选择“私有读写”&#xff09;。 s3 存储桶&#xff1a; 存储桶的名称…

【经典小练习】简单的文件加密解密

文章目录 &#x1f339;什么是文件加密⭐应用场景 &#x1f6f8;案例&#x1f33a;描述&#x1f33a;代码 &#x1f339;什么是文件加密 Java文件加密是指使用Java编程语言和相关的加密算法对文件进行加密处理。通过这种方式&#xff0c;可以将文件内容转换为一种非常规的形式…

Halcon Solution Guide I basics(4): Blob Analysis(连通性解析)

文章目录 文章专栏前言文章解析开头步骤分析简单案例进阶方案 进阶代码案例crystal&#xff0c;结晶匹配需求分析 文章专栏 Halcon开发 Halcon学习 练习项目gitee仓库 CSDN Major 博主Halcon文章推荐 前言 今天来看第三章内容&#xff0c;既然是零基础&#xff0c;而且我还有大…

希宝猫罐头怎么样?专业人士告诉你口碑好的猫罐头推荐

作为一个从业宠物营养师7年的人&#xff0c;可以说对于猫咪的食物很有研究和猫罐头品牌选购上&#xff0c;我有自己的见解。那么希宝猫罐头怎么样呢&#xff1f; 希宝猫罐头采用了先进的加工工艺&#xff0c;注重产品的包装和密封性&#xff0c;其包装设计简洁时尚&#xff0c…

STM32 中断系统

单片机学习 目录 文章目录 前言 一、中断系统 1.1 什么是中断 1.2 中断优先级 1.3 中断嵌套 1.4 C语言中的中断程序 二、STM32的中断通道和中断向量 2.1 中断通道 2.2 嵌套向量中断控制器NVIC 2.2.1 什么是NVIC 2.2.2 NVIC基本结构 2.2.3抢占优先级和响应优先级 2.2.4 NVIC的优…

深度学习卷积神经网络参数计算难点重点

目录 一、卷积层图像输出尺寸 二、池化层图像输出尺寸 三、全连接层输出尺寸 四、卷积层参数数量 五、全连接层参数数量 六、代码实现与验证 以LeNet5经典模型为例子并且通道数为1 LeNet5网络有7层&#xff1a; ​ 1.第1层&#xff1a;卷积层 ​ 输入&#xff1a;原始的图片像素…

c语言数字转圈

数字转圈 题干输入整数 N&#xff08;1≤N≤9&#xff09;&#xff0c;输出如下 N 阶方阵。 若输入5显示如下方阵&#xff1a; * 1** 2** 3** 4** 5* *16**17**18**19** 6* *15**24**25**20** 7* *14**23**22**21** 8* *13**12**11**10** 9*输入样例3输出样例* 1*…

linux高级篇基础理论六(firewalld,防火墙类型,,区域,服务端口,富语言)

♥️作者&#xff1a;小刘在C站 ♥️个人主页&#xff1a; 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验&#xff0c;以及思科模拟器全套网络实验教程。专栏&#xff1a;云计算技…

基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码

基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于战争策略算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于战争策略优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

测试工具JMeter的使用

目录 JMeter的安装配置 测试的性能指标 TPS 响应时长 并发连接 和 并发用户 CPU/内存/磁盘/网络 负载 性能测试实战流程 JMeter JMeter快速上手 GUI模式 运行 HTTP请求默认值 录制网站流量 模拟间隔时间 Cookie管理器 消息数据关联 变量 后置处理器 CSV 数据文…

中国企业500强的排名也在不断变化。面对不确定性的挑战,企业如何应对?

随着全球经济的不断发展和变化&#xff0c;中国企业500强的排名也在不断变化。面对不确定性的挑战&#xff0c;企业如何应对&#xff1f;在本文中&#xff0c;挖数据平台将提供数据源探讨中国企业500强在应对不确定性方面的突围与变革。 一、数据挖掘与分析 从2006年到2023年&…

【电子通识】什么是物料清单BOM(Bill of Material))

BOM (Bill of Materials)是我们常说的物料清单。BOM是制造业管理的重点之一&#xff0c;用于记载产品组成所需要的全部物料&#xff08;Items&#xff09;。物料需求的计算是从最终产品开始&#xff0c;层层往下推算出部件&#xff0c;组件&#xff0c;零件和原材料的需求量。这…

Python---函数定义时缺省参数(参数默认值)

缺省参数也叫默认参数&#xff0c;用于定义函数&#xff0c;为参数提供默认值&#xff0c;调用函数时可不传该默认参数的值&#xff08;注意&#xff1a;所有位置参数必须出现在默认参数前&#xff0c;包括函数定义和调用&#xff09;。 def user_info(name, age, gender男):pr…

汇编-CALL和RET指令

CALL指令调用一个过程&#xff0c; 使处理器从新的内存位置开始执行。过程使用RET(从过程返回) 指令将处理器转回到该过程被调用的程序点上。 CALL指令的动作&#xff1a; 1.将CALL指令的下一条指令地址压栈(作为子过程返回的地址) 2.将被调过程的地址复制到指令指针寄存器E…

搜维尔科技:Faceware面部捕捉最佳实践!

视频源和分辨率&#xff1a; 我们的软件针对 RGB 彩色素材进行了优化&#xff0c;不支持使用红外摄像机。 我们建议视频分辨率为 720p 和 1080p。低于 720p 的分辨率可能会对跟踪质量产生负面影响&#xff0c;而高于 1080p 的分辨率会导致存储要求和传输时间增加&#xff0c;而…

python——第十三天

uuid 是通用唯一识别码&#xff08;Universally Unique identifier&#xff09;的缩写 UUID是一个128比特的数值 uuid模块&#xff1a; 获取一个128位&#xff08;比特&#xff09;的永不重复的数字&#xff0c;当然我们使用的时候会转换为32个的字符串 impor uuud uui…

【Java 进阶篇】Jedis:让Java与Redis轻松对话的利器

在现代软件开发中&#xff0c;缓存系统是提高系统性能的常见手段之一&#xff0c;而Redis作为一个高性能的缓存数据库&#xff0c;被广泛应用于各类系统。如果你是Java开发者&#xff0c;那么使用Jedis库可以让你轻松地与Redis进行交互。本文将带你深入了解Jedis的快速入门&…

R语言——图解taxize,强烈推荐收藏关注,持续更新中

图解taxize 1. taxize分解思路1.1 图解说明 2. 针对不同数据库的函数组2.1 APGⅢ2.2 BOLD&#xff08;barcode of life data system&#xff09; 1. taxize分解思路 taxize可以帮助人们从许多数据库中获取信息。 由于要处理的数据库很多&#xff0c;导致taxize包含的功能函数…

可持续创新 精选路线

在加速企业数字化转型、 实现智能制造的升级之路上&#xff01; 使用好的工具固然重要&#xff0c; 而有好工具&#xff0c;也要会用工具。生信科技不仅为企业提供强大的产品支持&#xff0c; 更有全方位的定制化服务&#xff0c; 提升工程师的工具应用能力&#xff0c; 让企业…