c++版本opencv计算灰度图像的轮廓点

在这里插入图片描述

代码

#include<iostream>
#include<opencv.hpp>int main()
{std::string imgPath("D:\\prostate_run\\result_US_20230804_141531\\mask\\us\\104.bmp");cv::Mat imgGray = cv::imread(imgPath, 0);cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5));cv::morphologyEx(imgGray, imgGray, cv::MORPH_OPEN, kernel);/*cv::imshow("w", imgGray);cv::waitKey();*/// 二值化cv::Mat binary;cv::threshold(imgGray, binary, 0, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);/*cv::imshow("w", binary);cv::waitKey();*/std::vector<std::vector<cv::Point>> contours;std::vector<cv::Vec4i> hierachy;cv::findContours(binary, contours, hierachy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);std::cout << contours.size() << std::endl;// cv::Mat contourImage = cv::Mat::zeros(imgGray.size(), CV_8UC3);cv::Scalar redColor = cv::Scalar(0, 0, 255);cv::drawContours(contourImage, contours, 0, redColor, 1, cv::LINE_8);/*cv::imshow("w", contourImage);cv::waitKey();*///std::cout << contours[0].size() << std::endl;cv::Mat contourImage2 = cv::Mat::zeros(imgGray.size(), CV_8UC3);for (int i = 0; i < contours[0].size(); ++i){cv::Point point = contours[0][i];cv::circle(contourImage2, point, 1, redColor, -1);}cv::imshow("w2", contourImage2);cv::waitKey();return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167410.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

任意分圆环下的 RLWE:如何产生正确的噪声分布

参考文献&#xff1a; [Con09] Conrad K. The different ideal[J]. Expository papers/Lecture notes. Available at: http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/different.pdf, 2009.[LPR10] Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learn…

thinkphp6生成PDF自动换行

composer安装 composer require tecnickcom/tcpdf 示例 use TCPDF;public function info($university,$performance,$grade,$major){//获取到当前域名$domain request()->domain();//实例化$pdf new TCPDF(P, mm, A4, true, UTF-8, false);// 设置文档信息$pdf->SetCr…

Azkaban极简使用文档

登录 地址: http://服务器ip:8081/, 用户名密码默认都是azkaban 构建项目流程 添加Project 编写工作流文件 在本机新建文件夹如test, 创建一个flow20.project 文件, 内容 azkaban-flow-version: 2.0(固定步骤)编写flow文件, 例如一个最基础的实例 test1.flow nodes:- name…

JAVA序列化和反序列化

JAVA序列化和反序列化 文章目录 JAVA序列化和反序列化序列化什么是序列化&#xff1f;为什么要进行序列化?如何将对线进行序列化具体实现过程 完整代码 序列化 什么是序列化&#xff1f; 就是将对象转化为字节的过程 为什么要进行序列化? 让数据更高效的传输让数据更好的…

Vue中的$nextTick

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue中的$nextTick 目录 &#x1f40b;Vue中的$nextTick有什么作用&#xff1f; &#x1f40b;一、…

socket can中是如何根据 结构体can_bittiming_const中的字段 计算bitrate的?

在 SocketCAN 中&#xff0c;can_bittiming_const 结构体用于表示 CAN 总线的定时参数&#xff0c;包括位率&#xff08;bitrate&#xff09;的计算。can_bittiming_const 包含了许多与位率相关的参数&#xff0c;其中一些参数用于计算实际的位率。 下面是一些与位率计算相关的…

小辰的智慧树(差分+前缀和)

登录—专业IT笔试面试备考平台_牛客网 1.考虑总长度之和不能超过m&#xff0c;2考虑限制每棵树高度不能低于ci&#xff0c;如果用二分最短输能截到的高度&#xff0c;还要另外去判断&#xff0c;是否每棵树mid都能严格大于ci &#xff0c;这样容易超时&#xff0c;换个角度&…

SQL常见函数整理 _ lead() 向下偏移

1. 用法 是在窗口函数中使用的函数&#xff0c;它用于获取当前行的下一行&#xff08;后一行&#xff09;的某个列的值。具体来说&#xff0c;LEAD() 函数可用于查找任何给定行的下一行&#xff08;后一行&#xff09;的值&#xff0c;同时也可控制行数偏移量&#xff08;offse…

竞赛选题 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测

文章目录 0 简介1 基于 Keras 用 LSTM 网络做时间序列预测2 长短记忆网络3 LSTM 网络结构和原理3.1 LSTM核心思想3.2 遗忘门3.3 输入门3.4 输出门 4 基于LSTM的天气预测4.1 数据集4.2 预测示例 5 基于LSTM的股票价格预测5.1 数据集5.2 实现代码 6 lstm 预测航空旅客数目数据集预…

社交媒体广告数据采集:Jsoup 的最佳实践

搜狐是中国领先的综合门户网站之一&#xff0c;广告在其网站上广泛投放。为了了解搜狐广告的策略和趋势&#xff0c;采集和分析搜狐广告数据变得至关重要。但是&#xff0c;搜狐网站的广告数据通常需要通过网页抓取的方式获取&#xff0c;这就需要一个强大的工具来解析和提取数…

用友BIP与用友BIP对接集成销售出库列表查询连通销售出库单个保存((红字)销售出库审核-v)

用友BIP与用友BIP对接集成销售出库列表查询连通销售出库单个保存(&#xff08;红字&#xff09;销售出库审核-v) 源系统:用友BIP 面向数智化市场&#xff0c;用友倾力打造了全球领先的数智商业创新平台——用友BIP&#xff0c;定位为数智商业的应用级基础设施、企业服务产业的共…

pat实现基于邻接矩阵表示的深度优先遍历

void DFS(Graph G, int v) {visited[v] 1;printf("%c ", G.vexs[v]);for (int i 0; i < G.vexnum; i) {if (!visited[i] && G.arcs[v][i]) DFS(G, i);} }

SpectralGPT: Spectral Foundation Model 论文翻译2

遥感领域的通用大模型 2023.11.13在CVPR发表 原文地址&#xff1a;[2311.07113] SpectralGPT: Spectral Foundation Model (arxiv.org) 实验 ​ 在本节中&#xff0c;我们将严格评估我们的SpectralGPT模型的性能&#xff0c;并对其进行基准测试SOTA基础模型&#xff1a;ResN…

03.依赖倒置原则(Dependence Inversion Principle)

概述 高层模块不应依赖低层模块&#xff0c;二者都应该依赖其抽象。而抽象不应依赖细节&#xff0c;细节应该依赖抽象。依赖倒置原则的中心思想其实就是面向接口编程。 相对于细节的多变性&#xff0c;抽象的东西会稳定的多&#xff0c;所以以抽象为基础搭建的架构自然也会比以…

EMG肌肉电信号处理合集(二)

本文主要展示常见的肌电信号特征的提取说明。使用python 环境下的Pysiology计算库。 目录 1 肌电信号第一次burst的振幅&#xff0c; getAFP 函数 2 肌电信号波长的标准差计算&#xff0c;getDASDV函数 3 肌电信号功率谱频率比例&#xff0c;getFR函数 4 肌电信号直方图…

华清远见嵌入式学习——网络编程——小项目

项目要求&#xff1a; 代码实现&#xff1a; 服务器端&#xff1a; #include <myhead.h>//定义协议包 struct proto {char type;char name[20];char text[128]; };int main(int argc, const char *argv[]) {//判断从终端输入的字符串的个数if(argc ! 3){printf("…

无需API开发,钱方QFPay连接营销系统和广告推广平台

随着电子商务市场的不断发展&#xff0c;企业需要集成各种业务系统&#xff0c;以提高业务效率和降低运营成本。钱方QFPay提供了一种创新的解决方案&#xff0c;帮助企业实现系统间的连接和集成&#xff0c;无需进行复杂的API开发。除了电商系统和客服系统&#xff0c;钱方还能…

mysql:修改密码的几种方式

背景 当我们 brew install mysql 新安装 mysql 的时候&#xff0c;是没有密码的&#xff0c;我们可以直接通过 mysql -u root 连接上。但是密码还是要设置的&#xff0c;一是为了安全&#xff0c;二是有些数据库软件如 Sequel 连接都是必须要密码的&#xff0c;接下来我们来看…

电磁建模的分布式并行计算技术

本文提出了一种新的分布式并行电磁建模技术&#xff0c;以加快电磁结构的神经网络建模过程。现有的电磁建模技术通常需要反复改变微波器件的参数&#xff0c;驱动电磁模拟器以获得足够的训练和测试样本。随着电磁建模问题复杂性的增加&#xff0c;由于单台计算机的性能有限&…

机器学习【00】pycharm使用远程服务器

我们使用conda在服务器上创建虚拟环境&#xff0c;远程使用pycharm进行编程 pycharm版本2023.1.3 一.首先在服务器上创建虚拟环境 注&#xff1a;anaconda的安装可以参考ubuntu系统miniconda的安装 conda create --name tac python3.7二.pycharm 连接 点击add interpreter …