【C++学习手札】模拟实现list

                                                      🎬慕斯主页修仙—别有洞天

                                                       ♈️今日夜电波リナリア—まるりとりゅうが

                                                                0:36━━━━━━️💟──────── 3:51
                                                                    🔄   ◀️   ⏸   ▶️    ☰ 

                                      💗关注👍点赞🙌收藏您的每一次鼓励都是对我莫大的支持😍


目录

一、list实际的底层原理

二、list的模拟实现

         写在前面

各层封装的实现

        节点类

        迭代器类 

        list类 

list类详解 

        迭代器实现

list的修改操作

        Insert 

        erase

        swap 

        复用操作(push_back/front、pop_back/front、clear)

list的构造

        建立头节点

        构造函数

        拷贝构造和‘=’重载

        析构函数 

list的空间管理

list的访问相关

三、整体代码 


一、list实际的底层原理

        C++的STL库中的list是使用带头的双向循环链表实现的。list中存储的每个元素包含了两个指针,一个指向前一个节点,一个指向后一个节点,这样就可以方便地在list中进行插入和删除操作,这些操作的时间复杂度都是O(1)。

         大致的结构如下:

         如多大家对于这个数据结构不太熟悉的话,不妨看看作者之前写的一篇关于带头双向循环链表的文章:🌀【数据结构】—C语言实现双向链表(超详细!) 

二、list的模拟实现

         写在前面

        list的底层虽然是带头双向循环链表,但是对于它的实际实现不只是简单的链表而已,当然了,我们肯定会有链表的数据结构。但是,这个“结构”,经过了三层的封装才得以实现,分别是:  第一层:list的节点类

                第二层:list的迭代器类

                第三层:list类

        本文目前只实现正向的迭代器,反向迭代器会在后面的文章统一vector、string、list一起实现。

各层封装的实现

         节点类

        主要是包括:对于两个双向指针的定义以及数据的定义,再是通过初始化列表对于节点的初始化。

    // List的节点类template<class T>struct ListNode{ListNode(const T& val = T())//通过初始化列表初始化值:_val(val), _pPre(nullptr), _pNext(nullptr){}ListNode<T>* _pPre;ListNode<T>* _pNext;T _val;};

        迭代器类 

         迭代器实际上是对于指针进行操作,因此我们实例化并且重新命名了节点类的指针PNode,由于迭代器分为是否常量正向迭代器,对此我们额外定义了两个模板参数Ref、Ptr用于控制其中重载运算符 T& operator*() 和 T* operator->()后面的list类中会有体现。在迭代器中,其中,operator*和operator->返回指向节点的指针,operator++和operator--实现前后缀++/--运算符,operator==和operator!=用来比较两个迭代器是否指向同一个节点。

    //List的迭代器类template<class T, class Ref, class Ptr>class ListIterator{typedef ListNode<T>* PNode;typedef ListIterator<T, Ref, Ptr> Self;public:ListIterator(PNode pNode = nullptr):_pNode(pNode){}ListIterator(const Self& l):_pNode(l._pNode){}T& operator*(){return _pNode->_val;}T* operator->(){return &*this;}Self& operator++(){_pNode = _pNode->_pNext;return *this;}Self operator++(int){Self temp(*this);_pNode = _pNode->_pNext;return temp;}Self& operator--(){_pNode = _pNode->_pPre;return *this;}Self& operator--(int){Self temp(*this);_pNode = _pNode->_pPre;return temp;}bool operator!=(const Self& l){return _pNode != l._pNode;}bool operator==(const Self& l){return !(*this != l);}private:PNode _pNode;};

        list类 

        这里先给出主要的封装,具体的实现后面详解。可以看到我们又对于节点类进行了实例化并且重新命名,并且定义了一个数据变量。下面是重点了:我们对于迭代器类也进行了实例化并且重新命名,特别是对于上面我们所提到的Ref和Ptr是有做变动的注意看:对于是否常量正向迭代器分别做出了如下定义:T&, T*和const T&, const T*。这里所这的一些变动也是为了后续简化代码,避免我们因为动静态多一份代码

        请结合上面我们迭代器类中我们所提到的operator==和operator!=理解。

class list{typedef ListNode<T> Node;typedef Node* PNode;public:typedef ListIterator<T, T&, T*> iterator;//普通迭代器重命名typedef ListIterator<T, const T&, const T*> const_iterator;//静态迭代器重命名public://...private:PNode _pHead;};

list类详解 

        在C++中我们通常会进行各类函数的复用,以减少代码量和增加可读性。对此,我们尽量做到复用。

         迭代器实现

        返回头以及尾的迭代器,注意区分动静态 。

        // List Iteratoriterator begin(){return iterator(_pHead->_pNext);}iterator end(){return iterator(_pHead);}const_iterator begin()const{return const_iterator(_pHead->_pNext);}const_iterator end()const{return const_iterator(_pHead);}

 list的修改操作

        Insert 

         实现在pos位置前插入值为val的节点,开辟空间->保存原位置节点->新节点的前指针指向原节点的前一个节点->后节点指向原节点->该边原节点的前一个节点的后指针指向,指向新节点->原节点的前指针指向新节点->返回性节点的迭代器。

// 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){PNode pNewNode = new Node(val);PNode pCur = pos._pNode;pNewNode->_pPre = pCur->_pPre;pNewNode->_pNext = pCur;pNewNode->_pPre->_pNext = pNewNode;pCur->_pPre = pNewNode;return iterator(pNewNode);}

         erase

         删除pos位置的节点,返回该节点的下一个位置,保存删除j节点,保存原节点的下一个节点(用于返回)->一些列删除解链接操作->返回原节点的下一个节点的迭代器

        // 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){PNode pDel = pos._pNode;PNode pRet = pDel->_pNext;pDel->_pPre->_pNext = pDel->_pNext;pDel->_pNext->_pPre = pDel->_pPre;delete pDel;return iterator(pRet);}

        swap 

        void swap(list<T>& l){pNode tmp = _pHead;_pHead = l._pHead;l._pHead = tmp;}

         复用操作(push_back/front、pop_back/front、clear)

        void push_back(const T& val){ insert(end(), val);}void pop_back(){ erase(--end()); }void push_front(const T& val) { insert(begin(), val); }void pop_front() { erase(begin());}void clear(){iterator p = begin();while (p != end()){p = erase(p);}_pHead->_pPre = _pHead;_pHead->_pNext = _pHead;}

 list的构造

         建立头节点

        因为我们在构造、 拷贝等很多的场景中都会用到对于头结点的初始化,对此额外写一个函数用于减少代码量。

        void CreateHead(){_pHead = new Node;_pHead->_pPre = _pHead;_pHead->_pNext = _pHead;}

         构造函数

        实现无参、含参初始化、迭代器构造。

        // List的构造list(){CreateHead();}list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i){push_back(value);}}template <class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}

        拷贝构造‘=’重载

        list(const list<T>& l){CreateHead();list<T> temp(l.begin(), l.end());this->swap(temp);}list<T>& operator=(const list<T> l){this->swap(l);return *this;}

        析构函数 

        ~list(){clear();delete _pHead;_pHead = nullptr;}

 list的空间管理

        size_t size()const{size_t size = 0;ListNode* p = _pHead->_pNext;while (p != _pHead){size++;p = p->_pNext;}return size;}bool empty()const{return size() == 0;}

list的访问相关

        主要还是要区分是否为动静态相关。

        T& front(){assert(!empty());return _pHead->_pNext->_val;}const T& front()const{assert(!empty());return _pHead->_pNext->_val;}T& back(){assert(!empty());return _pHead->_pPre->_val;}const T& back()const{assert(!empty());return _pHead->_pPre->_val;}

三、整体代码 

#pragma once
#include<iostream>
#include<assert.h>using namespace std;namespace lt
{// List的节点类template<class T>struct ListNode{ListNode(const T& val = T())//通过初始化列表初始化值:_val(val), _pPre(nullptr), _pNext(nullptr){}ListNode<T>* _pPre;ListNode<T>* _pNext;T _val;};//List的迭代器类template<class T, class Ref, class Ptr>class ListIterator{typedef ListNode<T>* PNode;typedef ListIterator<T, Ref, Ptr> Self;public:ListIterator(PNode pNode = nullptr):_pNode(pNode){}ListIterator(const Self& l):_pNode(l._pNode){}T& operator*(){return _pNode->_val;}T* operator->(){return &*this;}Self& operator++(){_pNode = _pNode->_pNext;return *this;}Self operator++(int){Self temp(*this);_pNode = _pNode->_pNext;return temp;}Self& operator--(){_pNode = _pNode->_pPre;return *this;}Self& operator--(int){Self temp(*this);_pNode = _pNode->_pPre;return temp;}bool operator!=(const Self& l){return _pNode != l._pNode;}bool operator==(const Self& l){return !(*this != l);}private:PNode _pNode;};//list类template<class T>class list{typedef ListNode<T> Node;typedef Node* PNode;public:typedef ListIterator<T, T&, T*> iterator;//普通迭代器重命名typedef ListIterator<T, const T&, const T*> const_iterator;//静态迭代器重命名public:///// List的构造list(){CreateHead();}list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i){push_back(value);}}template <class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}list(const list<T>& l){CreateHead();list<T> temp(l.begin(), l.end());this->swap(temp);}list<T>& operator=(const list<T> l){this->swap(l);return *this;}~list(){clear();delete _pHead;_pHead = nullptr;}///// List Iteratoriterator begin(){return iterator(_pHead->_pNext);}iterator end(){return iterator(_pHead);}const_iterator begin()const{return const_iterator(_pHead->_pNext);}const_iterator end()const{return const_iterator(_pHead);}///// List Capacitysize_t size()const{size_t size = 0;ListNode* p = _pHead->_pNext;while (p != _pHead){size++;p = p->_pNext;}return size;}bool empty()const{return size() == 0;}// List AccessT& front(){assert(!empty());return _pHead->_pNext->_val;}const T& front()const{assert(!empty());return _pHead->_pNext->_val;}T& back(){assert(!empty());return _pHead->_pPre->_val;}const T& back()const{assert(!empty());return _pHead->_pPre->_val;}// List Modifyvoid push_back(const T& val){ insert(end(), val);}void pop_back(){ erase(--end()); }void push_front(const T& val) { insert(begin(), val); }void pop_front() { erase(begin());}// 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){PNode pNewNode = new Node(val);PNode pCur = pos._pNode;pNewNode->_pPre = pCur->_pPre;pNewNode->_pNext = pCur;pNewNode->_pPre->_pNext = pNewNode;pCur->_pPre = pNewNode;return iterator(pNewNode);}// 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){PNode pDel = pos._pNode;PNode pRet = pDel->_pNext;pDel->_pPre->_pNext = pDel->_pNext;pDel->_pNext->_pPre = pDel->_pPre;delete pDel;return iterator(pRet);}void clear(){iterator p = begin();while (p != end()){p = erase(p);}_pHead->_pPre = _pHead;_pHead->_pNext = _pHead;}void swap(list<T>& l){pNode tmp = _pHead;_pHead = l._pHead;l._pHead = tmp;}private:void CreateHead(){_pHead = new Node;_pHead->_pPre = _pHead;_pHead->_pNext = _pHead;}PNode _pHead;};
};


                        感谢你耐心的看到这里ღ( ´・ᴗ・` )比心,如有哪里有错误请踢一脚作者o(╥﹏╥)o! 

                                       

                                                                         给个三连再走嘛~  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165848.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

qgis添加wms服务

例如添加geoserver的wms服务 左右浏览器-WMS/WMTS-右键-新建连接 URL添加geoserver的wms地址 http://{ip}:{port}/geoserver/{workspace}/wms 展开wms目录&#xff0c;双击相应图层即可打开

Spark---基于Yarn模式提交任务

Yarn模式两种提交任务方式 一、yarn-client提交任务方式 1、提交命令 ./spark-submit --master yarn --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100 或者 ./spark-submit --master yarn–client --class org.apache.s…

三菱PLC应用[集锦]

三菱PLC应用[集锦] 如何判断用PNP还是NPN的个人工作心得 10&#xff5e;30VDC接近开关与PLC连接时&#xff0c;如何判断用PNP还是NPN的个人工作心得: 对于PLC的开关量输入回路。我个人感觉日本三菱的要好得多&#xff0c;甚至比西门子等赫赫大名的PLC都要实用和可靠&#xff01…

vulnhub4

靶机地址: https://download.vulnhub.com/admx/AdmX_new.7z 信息收集 fscan 扫一下 ┌──(kali㉿kali)-[~/Desktop/Tools/fscan] └─$ ./fscan_amd64 -h 192.168.120.138 ___ _ / _ \ ___ ___ _ __ __ _ ___| | __ / /_\/____/ __|/ …

LeetCode | 622. 设计循环队列

LeetCode | 622. 设计循环队列 OJ链接 思路&#xff1a; 我们这里有一个思路&#xff1a; 插入数据&#xff0c;bank往后走 删除数据&#xff0c;front往前走 再插入数据&#xff0c;就循环了 那上面这个方法可行吗&#xff1f; 怎么判断满&#xff0c;怎么判断空&#xff1…

模电知识点总结(二)二极管

系列文章目录 文章目录 系列文章目录二极管二极管电路分析方法理想模型恒压降模型折线模型小信号模型高频/开关 二极管应用整流限幅/钳位开关齐纳二极管变容二极管肖特基二极管光电器件光电二极管发光二极管激光二极管太阳能电池 二极管 硅二极管&#xff1a;死区电压&#xf…

C语言数组的距离(ZZULIOJ1200:数组的距离)

题目描述 已知元素从小到大排列的两个数组x[]和y[]&#xff0c; 请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个&#xff0c;这叫做数组的距离 。 输入&#xff1a;第一行为两个整数m, n(1≤m, n≤1000)&#xff0c;分别代表数组f[], g[]的长度。第二行有m个元素&a…

如何在Simulink中使用syms?换个思路解决报错:Function ‘syms‘ not supported for code generation.

问题描述 在Simulink中的User defined function使用syms函数&#xff0c;报错simulink无法使用外部函数。 具体来说&#xff1a; 我想在Predefined function定义如下符号函数作为输入信号&#xff0c;在后续模块传入函数参数赋值&#xff0c;以实现一次定义多次使用&#xf…

最小二乘线性回归

​ 线性回归&#xff08;linear regression&#xff09;&#xff1a;试图学得一个线性模型以尽可能准确地预测实际值的输出。 以一个例子来说明线性回归&#xff0c;假设银行贷款会根据 年龄 和 工资 来评估可放款的额度。即&#xff1a; ​ 数据&#xff1a;工资和年龄&…

LeeCode前端算法基础100题(2)- 最多水的容器

一、问题详情&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;…

案例025:基于微信小程序的移动学习平台的设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

[C++历练之路]优先级队列||反向迭代器的模拟实现

W...Y的主页 &#x1f60a; 代码仓库分享&#x1f495; &#x1f354;前言&#xff1a; 在C的宇宙中&#xff0c;优先队列似乎是一座巨大的宝库&#xff0c;藏匿着算法的珍宝。而就在这片代码的天空下&#xff0c;我们不仅可以探索优先队列的神奇&#xff0c;还能够揭开反向迭…

【【Linux系统下常用指令学习 之 二 】】

Linux系统下常用指令学习 之 二 文件查询和搜索 文件的查询和搜索也是最常用的操作&#xff0c;在嵌入式 Linux 开发中常常需要在 Linux 源码文件中查询某个文件是否存在&#xff0c;或者搜索哪些文件都调用了某个函数等等。 1、命令 find find 命令用于在目录结构中查找文件…

BUUCTF [ACTF新生赛2020]outguess 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 得到的 flag 请包上 flag{} 提交。 密文&#xff1a; 下载附件&#xff0c;得到一堆文件。 解题思路&#xff1a; 1、根据题目和flag.txt文件提示&#xff0c;猜测为outguess隐写。 outguess下载安装 kail 终端命…

数字乡村:科技赋能农村产业升级

数字乡村&#xff1a;科技赋能农村产业升级 数字乡村是指通过信息技术和数字化手段&#xff0c;推动农业现代化、农村经济发展和农民增收的一种新模式。近年来&#xff0c;随着互联网技术的飞速发展&#xff0c;数字乡村开始在全国范围内迅速兴起&#xff0c;为乡村经济注入了新…

leedcode 刷题 - 除自身以外数组的乘积 - 和为 K 的子数组

I238. 除自身以外数组的乘积 - 力扣&#xff08;LeetCode&#xff09; 给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在…

AdaBoost提升分类器性能

目录 AdaBoost算法原理 AdaBoost工作详情 初始权重分配 第一轮 第二轮 后续轮次 最终模型 AdaBoost的API解释 AdaBoost 对房价进行预测 AdaBoost 与决策树模型的比较 结论 AdaBoost算法原理 在数据挖掘中&#xff0c;分类算法可以说是核心算法&#xff0c;其中 Ada…

gitee推荐-PHP面试准备的资料

该内容为giee项目。PHP-Interview: 这个项目是自己准备PHP面试整理的资料。包括PHP、MySQL、Linux、计算机网络等资料。方便自己以后查阅&#xff0c;会不定期更新&#xff0c;欢迎提交pr&#xff0c;如果错误&#xff0c;请指出&#xff0c;谢谢 在线预览地址&#xff1a;Intr…

【LeetCode刷题笔记】DFSBFS(三)

图的基础知识 邻接矩阵是一个二维表,其中横纵坐标交叉的格子值为 1 的表示这两个顶点是连通的,否则是不连通的。

NVM得介绍和详细使用教程

NVM​​​​​​​&#xff08;Node Version Manager&#xff09;是一个用于管理多个Node.js版本的工具。它允许您在同一台计算机上轻松地切换和管理不同的Node.js版本。以下是NVM的介绍和详细使用教程&#xff1a; 安装NVM&#xff1a; 首先&#xff0c;您需要在计算机上安装N…