python中一个文件(A.py)怎么调用另一个文件(B.py)中定义的类AA详解和示例

本文主要讲解python文件中怎么调用另外一个py文件中定义的类,将通过代码和示例解读,帮助大家理解和使用。

目录

  • 代码
    • B.py
    • A.py
  • 调用过程

代码

B.py

如在文件B.py,定义了类别Bottleneck,其包含卷积层、正则化和激活函数层,主要对输入图像进行处理。但没有读取图像等代码。


from torch import nndef autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=3, s=2, p=None, g=1, d=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 2, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

A.py

文件A.py,在此部分,加载一幅图像并对其进行卷积处理。在代码中,没有卷积等层的定义,通过调用B.py中定义的类进行。

import B
from PIL import Image
from torchvision import transforms
import math
if __name__ == '__main__':image = Image.open("../11111.jpg")transform = transforms.Compose([transforms.ToTensor()])# 对图像应用转换操作input_image = transform(image)input_image = input_image.unsqueeze(0)CBR=B.Bottleneck(3,64)x=CBR(input_image )print(x.shape)

把上面代码保存到自己本地,再把图像路径换成的图像路径,运行得到打印机结果为:

在这里插入图片描述

调用过程

在上面A.py的代码中,先通过import B导入B.py文件,之后通过CBR=B.Bottleneck(3,64)关联和初始化定义的Bottleneck。最后使用x=CBR(input_image )进行使用即可。

注意,本文中用的示例是A.py和B.py在同一文件夹中,如不在同一文件夹需要添加路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165508.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WordPress用sql命令批量删除所有文章

有时我们需要将一个网站搬迁到另一个服务器。我们只想保留网站的模板样式,而不需要文章内容。一般情况下我们可以在后台删除已发表的文章,但如果有很多文章,我们则需要一次删除所有文章。 WordPress如何批量删除所有文章 进入网站空间后台&a…

常见树种(贵州省):013桉树、米槠、栲类

摘要:本专栏树种介绍图片来源于PPBC中国植物图像库(下附网址),本文整理仅做交流学习使用,同时便于查找,如有侵权请联系删除。 图片网址:PPBC中国植物图像库——最大的植物分类图片库 一、桉树 …

Java中的字符串String

目录 一、常用方法 1、字符串构造 2、String对象的比较 (1)、equals方法 (2)、compareTo方法 (3)、compareToIgnoreCase方法(忽略大小写进行比较) 3、字符串查找 4、转化 &…

4.3 实时阴影

一、基于图像的阴影技术(Shadow Map) 什么是阴影 当来自光源的至少一个点在空间中被遮挡时,就产生了阴影区域。 阴影的前提 直接光照不透明物体 阴影的实现方式 阴影体(Shadow Volumes)——空间中黑暗部分的几何…

Springboot集成swagger之knife4j

knife4j的最终效果&#xff1a; 支持直观的入参介绍、在线调试及离线各种API文档下载。 1 引入pom <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spring-boot-starter</artifactId><version>3.0.2</ver…

python 3.7安装并配置 pytorch(torch 1.8.2 + cuda 11.1 + torchaudio 0.8.2 + torchvision 0.9.2)

文章目录 前言一、安装 python二、安装 cuda cudnn二、安装 pytorch2.1 版本匹配2.1.1 方法一2.1.2 方法二2.2 安装 .tar.bz2 三、验证是否安装成功总结 前言 本篇文章主要介绍在Windows下 python 3.7 配置 pytorch&#xff0c;帮助需要的朋友避坑 安装 pytorch 需要多个版本适…

内建组件和模块

讨论 Vue.js 中几个非常重要的内建组件和模块&#xff0c;例如 KeepAlive 组件、Teleport 组件、Transition 组件等&#xff0c;它们都需要渲染器级别的底层支持。另外&#xff0c;这些内建组件所带来的能力&#xff0c;对开发者而言非常重要且实用&#xff0c;理解它们的工作原…

Word中如何实现 图片 | 表格 自动编号与文中引用编号对应

当我们在进行大篇幅word文档的编写时&#xff0c;为了节约修改文章中图片或表格所花费的大量时间&#xff0c;可以将图片自动编号&#xff0c;且让文中引用的顺序跟着图片顺序的变化而变化&#xff0c;具体操作如下&#xff1a; 1. 将鼠标定位在图片或者表格欲加编号的下方或上…

Banana Pi [BPi-R3-Mini] 回顾和主线 ImmortalWrt 固件支持

BananaPi BPi-R3 Mini 采用 MediaTek 830&#xff08;4 个 A53&#xff0c;最高 2.0 GHz&#xff09;&#xff0c;具有 2 个 2.5 GbE、AX4200 2.4G/5G 无线和 USB 2.0 端口。它还具有两个 M.2 连接器&#xff0c;可用于 NVMe SSD 和 5G 模块&#xff08;板上包含 Nano SIM 插槽…

ELK企业级日志分析平台——kibana数据可视化

部署 新建虚拟机server5&#xff0c;部署kibana [rootelk5 ~]# rpm -ivh kibana-7.6.1-x86_64.rpm [rootelk5 ~]# cd /etc/kibana/[rootelk5 kibana]# vim kibana.ymlserver.host: "0.0.0.0"elasticsearch.hosts: ["http://192.168.56.11:9200"]i18n.local…

微服务学习(十二):安装Minio

微服务学习&#xff08;十二&#xff09;&#xff1a;安装Minio 一、简介 MinIO 是一款基于Go语言发开的高性能、分布式的对象存储系统。客户端支持Java,Net,Python,Javacript, Golang语言。MinIO系统&#xff0c;非常适合于存储大容量非结构化的数据&#xff0c;例如图片、视…

Qt 软件开发框架(主要部分)

目录 1、 一个软件基本要素 &#xff08;1&#xff09;UI模块 &#xff08;2&#xff09;网络模块 &#xff08;3&#xff09;业务逻辑模块 &#xff08;4&#xff09;中间层 &#xff08;5&#xff09;独立模块&#xff08;守护进程、更新模块、日志收集模块…&#xff…

【spring(三)】AOP总结

&#x1f308;键盘敲烂&#xff0c;年薪30万&#x1f308; 目录 一、AOP相关概念 ① AOP核心思想思想&#xff1a; ② AOP专业术语&#xff1a; 二、AOP快速如入门 三、AOP工作流程 四、切入点表达式 ① 语法格式 ②支持通配符 ③书写技巧 五、通知类型 ①⭐环绕通知…

nodejs 如何将 Buffer 数据转为 String

问题说明 使用webSocket的时候出现了一个问题&#xff0c;前端小程序和nodejs后端建立websocket连接后&#xff0c;使用send方法发送到后端为buffer格式&#xff0c;以下为我前后端代码 1、前端小程序代码 //创建webSocket连接 const socket uni.connectSocket({url: wss…

[架构之路-249]:目标系统 - 设计方法 - 软件工程 - 需求工程- 需求开发:如何用图形表达需求,结构化方法的需求分析

目录 一、概述 二、数据模型&#xff1a;E-R图/实体关系图&#xff08;数据单元之间的结构关系&#xff09; 三、功能模型&#xff1a;数据流图DFD&#xff08;逻辑运算&#xff0c;包括输入和输出&#xff0c;实体之间的关系&#xff09;&#xff1a;输入》处理 》 输出 四…

【VSCode】VSCode 使用

目录 文章目录 目录插件配置设置代码不显示 git 提示 "xxx months ago | 1 author"设置打开项目不自动选择 CMakeLists 插件 以下插件为 C 开发偏好设置。 C/CCMakeCMake ToolsGitLensRemote DevelopmentRemote Explorer 配置 设置代码不显示 git 提示 “xxx mon…

绝地求生:PGC 2023 赛事直播期间最高可获:2000万G-Coins,你还不来吗?

今年PGC直播期间将有最高2000万G-Coin掉落&#xff0c;究竟花落谁家咱们拭目以待 公告原文&#xff1a;Watch PGC 2023 Live And Earn G-Coins! 如何赚取高额G-Coin&#xff1f; Throughout the PGC 2023, an astounding 20,000,000 G-Coins will be up for grabs as part of …

一致性 Hash 算法 Hash 环发生偏移怎么解决

本篇是对文章《一文彻底读懂一致性哈希算法》的重写&#xff0c;图文并茂&#xff0c;篇幅较长&#xff0c;欢迎阅读完提供宝贵的建议&#xff0c;一起提升文章质量。如果感觉不错不要忘记点赞、关注、转发哦。原文链接&#xff1a; 《一文彻底读懂一致性Hash 算法》 通过阅读本…

【OpenCV实现图像:可视化目标检测框】

文章目录 概要画框函数代码实现标签美化角点美化透明效果小结 概要 目标检测框的可视化在计算机视觉和机器学习领域中是一项重要的任务&#xff0c;有助于直观地理解和评估目标检测算法的性能。通过使用Python和相关的图像处理库&#xff0c;可以轻松实现目标检测框的可视化。…

Let’s xrOS 一款让你优先体验社区创作者的 visionOS App工具

Let’s xrOS Apple Vision Pro 发布预示着空间计算时代的到来&#xff0c;让科技爱好者和开发者开始思考如何在新的交互、系统和硬件上打造独特的三维应用。 自 WWDC 2023 的发布会后&#xff0c;社交媒体上涌现了许多精美的 visionOS App 的效果图和演示视频&#xff0c;然而…