保姆级 Keras 实现 YOLO v3 一

保姆级 Keras 实现 YOLO v3 一

  • 一. YOLO v3 总览
  • 二. 特征提取网络
    • 特征提取网络代码实现
  • 三. 特征融合
    • 特征融合代码实现
  • 四. 网络输出
    • 模型输出代码实现
  • 五. 网络模型代码实现
  • 六. 代码下载

如果要给 YOLO 目标检测算法一个评价的话, 就是快和准, 现在已经到了 v8, 但是我为什么还要写 v3 呢? 我觉得 v3 是一个节点, 承上启下的节点. 它有 v1 和 v2 的影子, 也为后面的其他版本奠定了基础. 对于教学或者学习 YOLO 是极好的

一. YOLO v3 总览

如果要给 YOLO v3 一个学习的策略的话, 我觉得从整体到局部比较合适, 我们把 YOLO v3 总结如下

v3 view
相比于祥细的结构图, 这样的三个框就把 YOLO v3 概括完了. 后面我们再将各个部分拆开祥细说明, 这就是从整体到局部的策略

二. 特征提取网络

这是最容易实现的部分, 因为不会涉及到坐标计算与损失函数之类的东西, 只需要按结构用代码实现即可, 下面是结构图, 括号里面的数字是各方块输出的 shape

dark_net

这个也不是祥细的结构图, 祥细的结构图还需要将各个方块展开, 前面的数字是 n 个这样的 Block 重复, 现在把 Conv Block 展开如下

conv_block

Residual Block 展开如下

residual block

特征图的尺寸是输入图像的 1 32 1 \over 32 321, 但是并没有用我们常见的 Pooling 来减小特征图尺寸, 而是使用步长为 2 的卷积层来实现的, 就是各个 Residual Block 之前的 Conv2D 层

Conv2D(kernel_size = (3, 3), strides = (2, 2), padding = "same")

特征提取网络代码实现

因为结构有重复性, 所以可以定义一个函数来重复调用

# 定义 cbl (Conv2D, BatchNormalization, LeakyReLU) 函数
def cbl(inputs, filters, kernel_size):x = keras.layers.Conv2D(filters = filters, kernel_size = kernel_size, strides = (1, 1),padding = "valid" if (1, 1) == kernel_size else "same")(inputs)x = keras.layers.BatchNormalization()(x)x = keras.layers.LeakyReLU(alpha = 0.1)(x)return x

接下来定义 Residual Block

# 定义 residual_block 函数
# filters: 第一个 cbl 的卷积核数量, 第二个 cbl 卷积核数量自动乘 2
# repeats: 模块重复次数
def residual_block(inputs, filters, repeats):x = inputsfor i in range(repeats):x = cbl(x, filters, kernel_size = (1, 1))x = cbl(x, filters * 2, kernel_size = (3, 3))x = keras.layers.Add()([inputs, x])return x

有了这两个函数, 就可以定义完整的特征提取网络 darknet

# 定义 darn_net 函数
def dark_net(inputs = None):x = cbl(inputs, filters = 32, kernel_size = (3, 3))x = keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x)x = residual_block(x, filters = 32, repeats = 1)x = keras.layers.Conv2D(filters = 128, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x)x = residual_block(x, filters = 64, repeats = 2)x = keras.layers.Conv2D(filters = 256, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x)# 52 × 52 特征图x_52 = residual_block(x, filters = 128, repeats = 8)x = keras.layers.Conv2D(filters = 512, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x_52)# 26 × 26 特征图x_26 = residual_block(x, filters = 256, repeats = 8)x = keras.layers.Conv2D(filters = 1024, kernel_size = (3, 3), strides = (2, 2), padding = "same")(x_26)# 13 × 13 特征图x_13 = residual_block(x, filters = 512, repeats = 4)return x_13, x_26, x_52

这样就和前面的结构图对上了, 函数输出 x_13, x_26, x_52 三层, 后面特征融合的时候会用到

三. 特征融合

这个也没有什么大问题, 只需要将上面的 13 × 13 特征图上采样放大与 26 × 26 特征图在最后一个维度拼接, 26 × 26 特征图上采样放大与 52 × 52 特征图在最后一个维度拼接, 如下图

neck

特征融合代码实现

特征融合 Conv Block 部分也有很多重复的方块, 所以可以定义成一个函数方便调用

# 定义 cbl block 函数
# filters: 第一个 block 的卷积核数量, 其他会自动计算
def cbl_block(inputs, filters):x = cbl(inputs, filters, kernel_size = (1, 1))x = cbl(x, filters * 2, kernel_size = (3, 3))x = cbl(x, filters, kernel_size = (1, 1))x = cbl(x, filters * 2, kernel_size = (3, 3))x = cbl(x, filters, kernel_size = (1, 1))return x

总的特征融合函数如下

# 定义 neck 函数
def neck(inputs = None):x_13, x_26, x_52 = inputsfeature = cbl_block(x_13, 512)feature = cbl(feature, filters = 256, kernel_size = (1, 1))feature = keras.layers.UpSampling2D(size = (2, 2), interpolation = "bilinear")(feature)feature = keras.layers.Concatenate(axis = -1)([feature, x_26])x_26 = cbl_block(feature, 256)feature = cbl(x_26, filters = 128, kernel_size = (1, 1))feature = keras.layers.UpSampling2D(size = (2, 2), interpolation = "bilinear")(feature)feature = keras.layers.Concatenate(axis = -1)([feature, x_52])x_52 = cbl_block(feature, 128)return x_13, x_26, x_52

四. 网络输出

这部分就更简单了, 将融合后的特征图做卷积, 变换到对应的通道数, 因为我要训练的数据集是 VOC2007, 所以输出通道数为 75 = (4 + 1 + 20) × 3. 模型结构如下

head

模型输出代码实现

输出函数如下, 输入是三个融合后的特征图

# 定义 head 函数
def head(inputs, filters):x_13, x_26, x_52 = inputsx_13 = cbl(x_13, 1024, kernel_size = (3, 3))x_13 = cbl(x_13, filters, kernel_size = (1, 1))x_26 = cbl(x_26, 512, kernel_size = (3, 3))x_26 = cbl(x_26, filters, kernel_size = (1, 1))x_52 = cbl(x_52, 256, kernel_size = (3, 3))x_52 = cbl(x_52, filters, kernel_size = (1, 1))return x_13, x_26, x_52

五. 网络模型代码实现

有了上面的相应的函数之后, 定义完整的模型就变得很简单了, 由 dark_net, neck, head 三部分构成

# 模型定义
image = keras.layers.Input(shape = (416, 416, 3), name = "input")x_13, x_26, x_52 = dark_net(inputs = image)
x_13, x_26, x_52 = neck([x_13, x_26, x_52])
x_13, x_26, x_52 = head([x_13, x_26, x_52], filters = 75)model = keras.Model(inputs = image,outputs = [x_13, x_26, x_52],name = "yolov3")
model.summary()
Model: "yolov3"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input (InputLayer)              [(None, 416, 416, 3) 0                                            
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 416, 416, 32) 896         input[0][0]                      
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 416, 416, 32) 128         conv2d[0][0]                     
__________________________________________________________________________________________________
leaky_re_lu (LeakyReLU)         (None, 416, 416, 32) 0           batch_normalization[0][0]        
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 208, 208, 64) 18496       leaky_re_lu[0][0]                
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 208, 208, 32) 2080        conv2d_1[0][0]                   
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 208, 208, 32) 128         conv2d_2[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU)       (None, 208, 208, 32) 0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 208, 208, 64) 18496       leaky_re_lu_1[0][0]              
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 208, 208, 64) 256         conv2d_3[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU)       (None, 208, 208, 64) 0           batch_normalization_2[0][0]      
__________________________________________________________________________________________________
add (Add)                       (None, 208, 208, 64) 0           conv2d_1[0][0]                   leaky_re_lu_2[0][0]              
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 104, 104, 128 73856       add[0][0]                        
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 104, 104, 64) 8256        conv2d_4[0][0]                   
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 104, 104, 64) 256         conv2d_5[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU)       (None, 104, 104, 64) 0           batch_normalization_3[0][0]      
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 104, 104, 128 73856       leaky_re_lu_3[0][0]              
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 104, 104, 128 512         conv2d_6[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU)       (None, 104, 104, 128 0           batch_normalization_4[0][0]      
__________________________________________________________________________________________________
add_1 (Add)                     (None, 104, 104, 128 0           conv2d_4[0][0]                   leaky_re_lu_4[0][0]              
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 104, 104, 64) 8256        add_1[0][0]                      
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 104, 104, 64) 256         conv2d_7[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU)       (None, 104, 104, 64) 0           batch_normalization_5[0][0]      
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 104, 104, 128 73856       leaky_re_lu_5[0][0]              
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 104, 104, 128 512         conv2d_8[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU)       (None, 104, 104, 128 0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
add_2 (Add)                     (None, 104, 104, 128 0           conv2d_4[0][0]                   leaky_re_lu_6[0][0]              
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 52, 52, 256)  295168      add_2[0][0]                      
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 52, 52, 128)  32896       conv2d_9[0][0]                   
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 52, 52, 128)  512         conv2d_10[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU)       (None, 52, 52, 128)  0           batch_normalization_7[0][0]      
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_7[0][0]              
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 52, 52, 256)  1024        conv2d_11[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_8 (LeakyReLU)       (None, 52, 52, 256)  0           batch_normalization_8[0][0]      
__________________________________________________________________________________________________
add_3 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_8[0][0]              
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 52, 52, 128)  32896       add_3[0][0]                      
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 52, 52, 128)  512         conv2d_12[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_9 (LeakyReLU)       (None, 52, 52, 128)  0           batch_normalization_9[0][0]      
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_9[0][0]              
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 52, 52, 256)  1024        conv2d_13[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_10 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_10[0][0]     
__________________________________________________________________________________________________
add_4 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_10[0][0]             
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 52, 52, 128)  32896       add_4[0][0]                      
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 52, 52, 128)  512         conv2d_14[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_11 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_11[0][0]     
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_11[0][0]             
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 52, 52, 256)  1024        conv2d_15[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_12 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_12[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_12[0][0]             
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 52, 52, 128)  32896       add_5[0][0]                      
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 52, 52, 128)  512         conv2d_16[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_13 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_13[0][0]     
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_13[0][0]             
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 52, 52, 256)  1024        conv2d_17[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_14 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_14[0][0]     
__________________________________________________________________________________________________
add_6 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_14[0][0]             
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 52, 52, 128)  32896       add_6[0][0]                      
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 52, 52, 128)  512         conv2d_18[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_15 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_15[0][0]     
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_15[0][0]             
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 52, 52, 256)  1024        conv2d_19[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_16 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_16[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_16[0][0]             
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 52, 52, 128)  32896       add_7[0][0]                      
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 52, 52, 128)  512         conv2d_20[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_17 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_17[0][0]     
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_17[0][0]             
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 52, 52, 256)  1024        conv2d_21[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_18 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_18[0][0]     
__________________________________________________________________________________________________
add_8 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_18[0][0]             
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 52, 52, 128)  32896       add_8[0][0]                      
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 52, 52, 128)  512         conv2d_22[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_19 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_19[0][0]     
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_19[0][0]             
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 52, 52, 256)  1024        conv2d_23[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_20 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_20[0][0]     
__________________________________________________________________________________________________
add_9 (Add)                     (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_20[0][0]             
__________________________________________________________________________________________________
conv2d_24 (Conv2D)              (None, 52, 52, 128)  32896       add_9[0][0]                      
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 52, 52, 128)  512         conv2d_24[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_21 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_21[0][0]     
__________________________________________________________________________________________________
conv2d_25 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_21[0][0]             
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 52, 52, 256)  1024        conv2d_25[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_22 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_22[0][0]     
__________________________________________________________________________________________________
add_10 (Add)                    (None, 52, 52, 256)  0           conv2d_9[0][0]                   leaky_re_lu_22[0][0]             
__________________________________________________________________________________________________
conv2d_26 (Conv2D)              (None, 26, 26, 512)  1180160     add_10[0][0]                     
__________________________________________________________________________________________________
conv2d_27 (Conv2D)              (None, 26, 26, 256)  131328      conv2d_26[0][0]                  
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 26, 26, 256)  1024        conv2d_27[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_23 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_23[0][0]     
__________________________________________________________________________________________________
conv2d_28 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_23[0][0]             
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 26, 26, 512)  2048        conv2d_28[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_24 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_24[0][0]     
__________________________________________________________________________________________________
add_11 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_24[0][0]             
__________________________________________________________________________________________________
conv2d_29 (Conv2D)              (None, 26, 26, 256)  131328      add_11[0][0]                     
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 26, 26, 256)  1024        conv2d_29[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_25 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_25[0][0]     
__________________________________________________________________________________________________
conv2d_30 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_25[0][0]             
__________________________________________________________________________________________________
batch_normalization_26 (BatchNo (None, 26, 26, 512)  2048        conv2d_30[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_26 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_26[0][0]     
__________________________________________________________________________________________________
add_12 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_26[0][0]             
__________________________________________________________________________________________________
conv2d_31 (Conv2D)              (None, 26, 26, 256)  131328      add_12[0][0]                     
__________________________________________________________________________________________________
batch_normalization_27 (BatchNo (None, 26, 26, 256)  1024        conv2d_31[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_27 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_27[0][0]     
__________________________________________________________________________________________________
conv2d_32 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_27[0][0]             
__________________________________________________________________________________________________
batch_normalization_28 (BatchNo (None, 26, 26, 512)  2048        conv2d_32[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_28 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_28[0][0]     
__________________________________________________________________________________________________
add_13 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_28[0][0]             
__________________________________________________________________________________________________
conv2d_33 (Conv2D)              (None, 26, 26, 256)  131328      add_13[0][0]                     
__________________________________________________________________________________________________
batch_normalization_29 (BatchNo (None, 26, 26, 256)  1024        conv2d_33[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_29 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_29[0][0]     
__________________________________________________________________________________________________
conv2d_34 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_29[0][0]             
__________________________________________________________________________________________________
batch_normalization_30 (BatchNo (None, 26, 26, 512)  2048        conv2d_34[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_30 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_30[0][0]     
__________________________________________________________________________________________________
add_14 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_30[0][0]             
__________________________________________________________________________________________________
conv2d_35 (Conv2D)              (None, 26, 26, 256)  131328      add_14[0][0]                     
__________________________________________________________________________________________________
batch_normalization_31 (BatchNo (None, 26, 26, 256)  1024        conv2d_35[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_31 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_31[0][0]     
__________________________________________________________________________________________________
conv2d_36 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_31[0][0]             
__________________________________________________________________________________________________
batch_normalization_32 (BatchNo (None, 26, 26, 512)  2048        conv2d_36[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_32 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_32[0][0]     
__________________________________________________________________________________________________
add_15 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_32[0][0]             
__________________________________________________________________________________________________
conv2d_37 (Conv2D)              (None, 26, 26, 256)  131328      add_15[0][0]                     
__________________________________________________________________________________________________
batch_normalization_33 (BatchNo (None, 26, 26, 256)  1024        conv2d_37[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_33 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_33[0][0]     
__________________________________________________________________________________________________
conv2d_38 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_33[0][0]             
__________________________________________________________________________________________________
batch_normalization_34 (BatchNo (None, 26, 26, 512)  2048        conv2d_38[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_34 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_34[0][0]     
__________________________________________________________________________________________________
add_16 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_34[0][0]             
__________________________________________________________________________________________________
conv2d_39 (Conv2D)              (None, 26, 26, 256)  131328      add_16[0][0]                     
__________________________________________________________________________________________________
batch_normalization_35 (BatchNo (None, 26, 26, 256)  1024        conv2d_39[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_35 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_35[0][0]     
__________________________________________________________________________________________________
conv2d_40 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_35[0][0]             
__________________________________________________________________________________________________
batch_normalization_36 (BatchNo (None, 26, 26, 512)  2048        conv2d_40[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_36 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_36[0][0]     
__________________________________________________________________________________________________
add_17 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_36[0][0]             
__________________________________________________________________________________________________
conv2d_41 (Conv2D)              (None, 26, 26, 256)  131328      add_17[0][0]                     
__________________________________________________________________________________________________
batch_normalization_37 (BatchNo (None, 26, 26, 256)  1024        conv2d_41[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_37 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_37[0][0]     
__________________________________________________________________________________________________
conv2d_42 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_37[0][0]             
__________________________________________________________________________________________________
batch_normalization_38 (BatchNo (None, 26, 26, 512)  2048        conv2d_42[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_38 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_38[0][0]     
__________________________________________________________________________________________________
add_18 (Add)                    (None, 26, 26, 512)  0           conv2d_26[0][0]                  leaky_re_lu_38[0][0]             
__________________________________________________________________________________________________
conv2d_43 (Conv2D)              (None, 13, 13, 1024) 4719616     add_18[0][0]                     
__________________________________________________________________________________________________
conv2d_44 (Conv2D)              (None, 13, 13, 512)  524800      conv2d_43[0][0]                  
__________________________________________________________________________________________________
batch_normalization_39 (BatchNo (None, 13, 13, 512)  2048        conv2d_44[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_39 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_39[0][0]     
__________________________________________________________________________________________________
conv2d_45 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_39[0][0]             
__________________________________________________________________________________________________
batch_normalization_40 (BatchNo (None, 13, 13, 1024) 4096        conv2d_45[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_40 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_40[0][0]     
__________________________________________________________________________________________________
add_19 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  leaky_re_lu_40[0][0]             
__________________________________________________________________________________________________
conv2d_46 (Conv2D)              (None, 13, 13, 512)  524800      add_19[0][0]                     
__________________________________________________________________________________________________
batch_normalization_41 (BatchNo (None, 13, 13, 512)  2048        conv2d_46[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_41 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_41[0][0]     
__________________________________________________________________________________________________
conv2d_47 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_41[0][0]             
__________________________________________________________________________________________________
batch_normalization_42 (BatchNo (None, 13, 13, 1024) 4096        conv2d_47[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_42 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_42[0][0]     
__________________________________________________________________________________________________
add_20 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  leaky_re_lu_42[0][0]             
__________________________________________________________________________________________________
conv2d_48 (Conv2D)              (None, 13, 13, 512)  524800      add_20[0][0]                     
__________________________________________________________________________________________________
batch_normalization_43 (BatchNo (None, 13, 13, 512)  2048        conv2d_48[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_43 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_43[0][0]     
__________________________________________________________________________________________________
conv2d_49 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_43[0][0]             
__________________________________________________________________________________________________
batch_normalization_44 (BatchNo (None, 13, 13, 1024) 4096        conv2d_49[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_44 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_44[0][0]     
__________________________________________________________________________________________________
add_21 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  leaky_re_lu_44[0][0]             
__________________________________________________________________________________________________
conv2d_50 (Conv2D)              (None, 13, 13, 512)  524800      add_21[0][0]                     
__________________________________________________________________________________________________
batch_normalization_45 (BatchNo (None, 13, 13, 512)  2048        conv2d_50[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_45 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_45[0][0]     
__________________________________________________________________________________________________
conv2d_51 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_45[0][0]             
__________________________________________________________________________________________________
batch_normalization_46 (BatchNo (None, 13, 13, 1024) 4096        conv2d_51[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_46 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_46[0][0]     
__________________________________________________________________________________________________
add_22 (Add)                    (None, 13, 13, 1024) 0           conv2d_43[0][0]                  leaky_re_lu_46[0][0]             
__________________________________________________________________________________________________
conv2d_52 (Conv2D)              (None, 13, 13, 512)  524800      add_22[0][0]                     
__________________________________________________________________________________________________
batch_normalization_47 (BatchNo (None, 13, 13, 512)  2048        conv2d_52[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_47 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_47[0][0]     
__________________________________________________________________________________________________
conv2d_53 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_47[0][0]             
__________________________________________________________________________________________________
batch_normalization_48 (BatchNo (None, 13, 13, 1024) 4096        conv2d_53[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_48 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_48[0][0]     
__________________________________________________________________________________________________
conv2d_54 (Conv2D)              (None, 13, 13, 512)  524800      leaky_re_lu_48[0][0]             
__________________________________________________________________________________________________
batch_normalization_49 (BatchNo (None, 13, 13, 512)  2048        conv2d_54[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_49 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_49[0][0]     
__________________________________________________________________________________________________
conv2d_55 (Conv2D)              (None, 13, 13, 1024) 4719616     leaky_re_lu_49[0][0]             
__________________________________________________________________________________________________
batch_normalization_50 (BatchNo (None, 13, 13, 1024) 4096        conv2d_55[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_50 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_50[0][0]     
__________________________________________________________________________________________________
conv2d_56 (Conv2D)              (None, 13, 13, 512)  524800      leaky_re_lu_50[0][0]             
__________________________________________________________________________________________________
batch_normalization_51 (BatchNo (None, 13, 13, 512)  2048        conv2d_56[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_51 (LeakyReLU)      (None, 13, 13, 512)  0           batch_normalization_51[0][0]     
__________________________________________________________________________________________________
conv2d_57 (Conv2D)              (None, 13, 13, 256)  131328      leaky_re_lu_51[0][0]             
__________________________________________________________________________________________________
batch_normalization_52 (BatchNo (None, 13, 13, 256)  1024        conv2d_57[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_52 (LeakyReLU)      (None, 13, 13, 256)  0           batch_normalization_52[0][0]     
__________________________________________________________________________________________________
up_sampling2d (UpSampling2D)    (None, 26, 26, 256)  0           leaky_re_lu_52[0][0]             
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 26, 26, 768)  0           up_sampling2d[0][0]              add_18[0][0]                     
__________________________________________________________________________________________________
conv2d_58 (Conv2D)              (None, 26, 26, 256)  196864      concatenate[0][0]                
__________________________________________________________________________________________________
batch_normalization_53 (BatchNo (None, 26, 26, 256)  1024        conv2d_58[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_53 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_53[0][0]     
__________________________________________________________________________________________________
conv2d_59 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_53[0][0]             
__________________________________________________________________________________________________
batch_normalization_54 (BatchNo (None, 26, 26, 512)  2048        conv2d_59[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_54 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_54[0][0]     
__________________________________________________________________________________________________
conv2d_60 (Conv2D)              (None, 26, 26, 256)  131328      leaky_re_lu_54[0][0]             
__________________________________________________________________________________________________
batch_normalization_55 (BatchNo (None, 26, 26, 256)  1024        conv2d_60[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_55 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_55[0][0]     
__________________________________________________________________________________________________
conv2d_61 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_55[0][0]             
__________________________________________________________________________________________________
batch_normalization_56 (BatchNo (None, 26, 26, 512)  2048        conv2d_61[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_56 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_56[0][0]     
__________________________________________________________________________________________________
conv2d_62 (Conv2D)              (None, 26, 26, 256)  131328      leaky_re_lu_56[0][0]             
__________________________________________________________________________________________________
batch_normalization_57 (BatchNo (None, 26, 26, 256)  1024        conv2d_62[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_57 (LeakyReLU)      (None, 26, 26, 256)  0           batch_normalization_57[0][0]     
__________________________________________________________________________________________________
conv2d_63 (Conv2D)              (None, 26, 26, 128)  32896       leaky_re_lu_57[0][0]             
__________________________________________________________________________________________________
batch_normalization_58 (BatchNo (None, 26, 26, 128)  512         conv2d_63[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_58 (LeakyReLU)      (None, 26, 26, 128)  0           batch_normalization_58[0][0]     
__________________________________________________________________________________________________
up_sampling2d_1 (UpSampling2D)  (None, 52, 52, 128)  0           leaky_re_lu_58[0][0]             
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 52, 52, 384)  0           up_sampling2d_1[0][0]            add_10[0][0]                     
__________________________________________________________________________________________________
conv2d_64 (Conv2D)              (None, 52, 52, 128)  49280       concatenate_1[0][0]              
__________________________________________________________________________________________________
batch_normalization_59 (BatchNo (None, 52, 52, 128)  512         conv2d_64[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_59 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_59[0][0]     
__________________________________________________________________________________________________
conv2d_65 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_59[0][0]             
__________________________________________________________________________________________________
batch_normalization_60 (BatchNo (None, 52, 52, 256)  1024        conv2d_65[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_60 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_60[0][0]     
__________________________________________________________________________________________________
conv2d_66 (Conv2D)              (None, 52, 52, 128)  32896       leaky_re_lu_60[0][0]             
__________________________________________________________________________________________________
batch_normalization_61 (BatchNo (None, 52, 52, 128)  512         conv2d_66[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_61 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_61[0][0]     
__________________________________________________________________________________________________
conv2d_67 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_61[0][0]             
__________________________________________________________________________________________________
batch_normalization_62 (BatchNo (None, 52, 52, 256)  1024        conv2d_67[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_62 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_62[0][0]     
__________________________________________________________________________________________________
conv2d_68 (Conv2D)              (None, 52, 52, 128)  32896       leaky_re_lu_62[0][0]             
__________________________________________________________________________________________________
batch_normalization_63 (BatchNo (None, 52, 52, 128)  512         conv2d_68[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_63 (LeakyReLU)      (None, 52, 52, 128)  0           batch_normalization_63[0][0]     
__________________________________________________________________________________________________
conv2d_69 (Conv2D)              (None, 13, 13, 1024) 9438208     add_22[0][0]                     
__________________________________________________________________________________________________
conv2d_71 (Conv2D)              (None, 26, 26, 512)  1180160     leaky_re_lu_57[0][0]             
__________________________________________________________________________________________________
conv2d_73 (Conv2D)              (None, 52, 52, 256)  295168      leaky_re_lu_63[0][0]             
__________________________________________________________________________________________________
batch_normalization_64 (BatchNo (None, 13, 13, 1024) 4096        conv2d_69[0][0]                  
__________________________________________________________________________________________________
batch_normalization_66 (BatchNo (None, 26, 26, 512)  2048        conv2d_71[0][0]                  
__________________________________________________________________________________________________
batch_normalization_68 (BatchNo (None, 52, 52, 256)  1024        conv2d_73[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_64 (LeakyReLU)      (None, 13, 13, 1024) 0           batch_normalization_64[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_66 (LeakyReLU)      (None, 26, 26, 512)  0           batch_normalization_66[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_68 (LeakyReLU)      (None, 52, 52, 256)  0           batch_normalization_68[0][0]     
__________________________________________________________________________________________________
conv2d_70 (Conv2D)              (None, 13, 13, 75)   76875       leaky_re_lu_64[0][0]             
__________________________________________________________________________________________________
conv2d_72 (Conv2D)              (None, 26, 26, 75)   38475       leaky_re_lu_66[0][0]             
__________________________________________________________________________________________________
conv2d_74 (Conv2D)              (None, 52, 52, 75)   19275       leaky_re_lu_68[0][0]             
__________________________________________________________________________________________________
batch_normalization_65 (BatchNo (None, 13, 13, 75)   300         conv2d_70[0][0]                  
__________________________________________________________________________________________________
batch_normalization_67 (BatchNo (None, 26, 26, 75)   300         conv2d_72[0][0]                  
__________________________________________________________________________________________________
batch_normalization_69 (BatchNo (None, 52, 52, 75)   300         conv2d_74[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_65 (LeakyReLU)      (None, 13, 13, 75)   0           batch_normalization_65[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_67 (LeakyReLU)      (None, 26, 26, 75)   0           batch_normalization_67[0][0]     
__________________________________________________________________________________________________
leaky_re_lu_69 (LeakyReLU)      (None, 52, 52, 75)   0           batch_normalization_69[0][0]     
==================================================================================================
Total params: 66,416,517
Trainable params: 66,367,427
Non-trainable params: 49,090
__________________________________________________________________________________________________

加上输入层一共 243 层

六. 代码下载

示例代码可下载 Jupyter Notebook 示例代码

下一篇: 保姆级 Keras 实现 YOLO v3 二

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165314.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何开启MySQL的慢查询日志

说明:如果需要查看某一条SQL查询速度慢,并对慢的SQL进行优化,那么开启MySQL慢查询日志是一定要做的事情,本文介绍如何开启MySQL的慢查询日志; 查看MySQL慢查询是否开启 首先,输入下面的命令,查…

为什么 x86 操作系统从 0x7c00 处开始

0x00:x86 架构 BIOS 引导加载程序中的"0x7C00"之谜 你知道 x86 操作系统中的"0x7C00"这个神奇数字吗 ? "0x7C00" 是BIOS加载MBR(主引导记录,磁盘中的第一个扇区)的内存地址。操作系统或引导加载…

2-Linux学习环境搭建

1 Linux学习环境搭建 1.1 虚拟化介绍 # win 机器----》装一个虚拟化软件----》虚拟化出linux操作系统# kvm vmware openstack docker k8s # kvm vmware 虚拟化软件 -运行在linux上,做虚拟化的软件 -vmware运行在win,linux,商业软件…

AMEYA360:瑞萨面向高端工业传感器系统推出高精度模拟前端的32位RX MCU

全球半导体解决方案供应商瑞萨电子(TSE:6723)宣布面向高端工业传感器系统推出一款全新RX产品——RX23E-B,扩展32位微控制器(MCU)产品线。新产品作为广受欢迎的RX产品家族的一员,具有高精度模拟前…

【JavaSE】基础笔记 - 异常(Exception)

目录 1、异常的概念和体系结构 1.1、异常的概念 1.2、 异常的体系结构 1.3 异常的分类 2、异常的处理 2.1、防御式编程 2.2、异常的抛出 2.3、异常的捕获 2.3.1、异常声明throws 2.3.2、try-catch捕获并处理 3、自定义异常类 1、异常的概念和体系结构 1.1、异常的…

前端开发工具集合

文章目录 Visual Studio Code (VS Code)安装及配置一、安装二、常用插件三、相关配置四、统一配置代码 Visual Studio Code (VS Code)安装及配置 一、安装 下载地址:https://code.visualstudio.com/ ?> VS Code 下载慢,解决办法请点击 双击下载文件…

Java零基础——SpringMVC篇

1.SpringMVC介绍 SpringMVC是Spring框架中的一个组件,是一个轻量级的web的MVC框架,充当controller,其本质就是一个Servlet。 1.1 传统Servlet的不足 每个请求,都需要定义一个Servlet。虽然可以在service方法中,根据业务标识进行…

系列二、Spring整合单元测试

一、概述 Spring中获取bean最常见的方式是通过ClassPathXmlApplicationContext 或者 AnnotationConfigApplicationContext的getBean()方式获取bean,那么在Spring中如何像在SpringBoot中直接一个类上添加个SpringBootTest注解,即可在类中注入自己想要测试…

vue2生命周期

前言 vue的生命周期其实可以分为两块,一个是vue实例的生命周期,一个是组件的生命周期。 vue实例的生命周期方法共有4个:$mout,$forceUpdate,$nextTick,$destroy vue组件的生命周期钩子共有8个:beforeCreate,created,beforeMount,mounted,beforeUpdate, updated,beforeDestr…

C/C++小写字母的判断 2022年3月电子学会中小学生软件编程(C/C++)等级考试一级真题答案解析

目录 C/C小写字母的判断 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C小写字母的判断 2022年3月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 输入一个字符,判断是否是英文小…

iframe内部子页面与外部主页面通讯

文章目录 一、问题二、解决2.1、子页面2.2、主页面 三、知识点3.1、[浏览器兼容性](https://developer.mozilla.org/zh-CN/docs/Web/API/Window/postMessage#%E6%B5%8F%E8%A7%88%E5%99%A8%E5%85%BC%E5%AE%B9%E6%80%A7)3.2、详解3.2.1、发送方3.2.2、接收方 一、问题 如上所示&a…

五分钟,Docker安装flink,并使用flinksql消费kafka数据

1、拉取flink镜像,创建网络 docker pull flink docker network create flink-network2、创建 jobmanager # 创建 JobManager docker run \-itd \--namejobmanager \--publish 8081:8081 \--network flink-network \--env FLINK_PROPERTIES"jobmanager.rpc.ad…

【C++干货铺】适配器 | stack | queue

个人主页点击直达:小白不是程序媛 C系列学习专栏:C干货铺 代码仓库:Gitee 目录 stack的介绍和使用 stack的介绍 stack的使用 queue的介绍和使用 queue的介绍 queue的使用 容器适配器 什么是适配器 STL中stack和queue的底层结构 d…

Python——基于YOLOV8的车牌识别(源码+教程)

目录 一、前言 二 、完成效果 三、 项目包 四、运行项目 (教程) 一、前言 YOLOv8LPRNet车牌定位与识别https://www.bilibili.com/video/BV1vk4y1E7MZ/ 最近做了有一个车牌识别的小需求,今天完成了,在此记录和分享 首先&#x…

办公技巧:Word中插入图片、形状、文本框排版技巧

目录 一、插入图片排版技巧 二、添加形状排版技巧 三、插入“文本框”排版技巧 我们平常在制作word时候经常会遇到插入选项卡下的图片、形状和文本框这三种情况下,那么如何使得Word文档当中添加这三个元素的同时,又能保证样式美观呢,今天小…

ComfyUI搭建使用教程

ComfyUI 是一个基于节点流程式的stable diffusion AI 绘图工具WebUI, 你可以把它想象成集成了stable diffusion功能的substance designer, 通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。但节点式的工…

【分布式】分布式事务及其解决方案

目录 一、分布式事务二、分布式事务的解决方案1. 全局事务(1)DTP模型(2) 两阶段提交协议(2PC)原理二阶段提交的缺点 (3)三阶段提交协议(3PC)原理 2. 基于可靠…

DDoS攻击和CC攻击有什么不同之处?

DDoS是针对服务器IP发起,CC攻击针对的是业务端口。DDoS攻击打的是网站的服务器,而CC攻击是针对网站的页面攻击,用术语来说就是,一个是WEB网络层拒绝服务攻击(DDoS),一个是WEB应用层拒绝服务攻击…

【JavaWeb】HTMLCSSJavaScript

HTML&CSS&JavaScript 文章目录 HTML&CSS&JavaScript一、开发工具及在线帮助文档二、 HTML2.1 HTML&CSS&JavaScript的作用2.2 HTML基础结构2.3 HTML概念词汇解释2.4 HTML的语法规则2.5 常用标签 三、CSS3.1 引入方式3.2 CSS选择器3.3 CSS浮动3.4 CSS定位…

Linux | 从虚拟地址到物理地址

前言 本章主要讲解虚拟地址是怎么转化成物理地址的,以及页表相关知识;本文环境默认为32位机器下;如果你连什么是虚拟地址都不知道可以先看看下面这篇文章; Linux | 进程地址空间-CSDN博客 一、概念补充 页表:是一种数据…