Spark事件总线机制
采用Spark2.11源码,以下类或方法被@DeveloperApi注解额部分,可能出现不同版本不同实现的情况。
Spark中的事件总线用于接受事件并提交到对应的监听器中。事件总线在Spark应用启动时,会在SparkContext
中激活spark运行的事件总线(LiveListenerBus
)。
LiveListenerBus相关的部分类图如下:
由于Spark使用scala语言编写的,所以在类图上的接口代表的是Traits类的接口功能。
主体逻辑
启动应用的时候,在SparkConext
中对LiveListenerBus
进行实例化,除了内部的监听器,还将注册在 spark.extraListeners
配置项中指定的监听器,然后启动监听器总线。
在LiveListenerBus
中使用AsyncEventQueue
作为核心,实现将事件异步的分发给已经注册的SparkListener
监听器们。其中AsyncEventQueue
有4类:
LiveListenerBus
将AsyncEventQueue
分为4类,不同的事件分发给各自独立的线程进行处理,防止在监听器和事件较多的时候造成积压问题。
eventLog
:日志事件队列executorManagement
:执行器管理队列appStatus
:应用程序状态队列shared
:非内部监听器共享的队列
在AsyncEventQueue内部采用LinkedBlockingQueue来存储事件,并启动一个常住线程(dispatchThread
)进行事件的转发。
代码详解
org.apache.spark.util.ListenerBus
Traits类
scala中的Traits类,类似Java中的接口类。与接口相同的部分是可以定义抽象的方法和成员,不用的部分是可以包含具体的方法可以成员。
package org.apache.spark.utilimport java.util.concurrent.CopyOnWriteArrayListimport scala.collection.JavaConverters._
import scala.reflect.ClassTag
import scala.util.control.NonFatalimport com.codahale.metrics.Timerimport org.apache.spark.internal.Logging/*** 事件总线的基类。用来转发事件到对应的事件监听器*/
// [ L<:AnyRef]指的是泛型,<:符号是泛型的上限。private[spark]代表作用域,只对spark目录下可见
private[spark] trait ListenerBus[L <: AnyRef, E] extends Logging {// (L, Option[Timer])采用的元组式集合private[this] val listenersPlusTimers = new CopyOnWriteArrayList[(L, Option[Timer])]// Marked `private[spark]` for access in tests.private[spark] def listeners = listenersPlusTimers.asScala.map(_._1).asJavaprotected def getTimer(listener: L): Option[Timer] = None/*** 添加监听器来监听事件。 该方法是线程安全的,可以在任何线程中调用。*/final def addListener(listener: L): Unit = {listenersPlusTimers.add((listener, getTimer(listener)))}/*** 移除监听器,它将不会接收任何事件。 该方法是线程安全的,可以在任何线程中调用。*/final def removeListener(listener: L): Unit = {listenersPlusTimers.asScala.find(_._1 eq listener).foreach { listenerAndTimer =>listenersPlusTimers.remove(listenerAndTimer)}}/*** 如果删除侦听器时需要进行任何额外的清理,则可以由子类覆盖它。 特别是AsyncEventQueue可以清理LiveListenerBus中的队列。*/def removeListenerOnError(listener: L): Unit = {removeListener(listener)}/*** 将事件转发给所有注册的侦听器。 `postToAll` 调用者应该保证在同一线程中为所有事件调用 `postToAll`。*/def postToAll(event: E): Unit = {val iter = listenersPlusTimers.iteratorwhile (iter.hasNext) {val listenerAndMaybeTimer = iter.next()val listener = listenerAndMaybeTimer._1val maybeTimer = listenerAndMaybeTimer._2val maybeTimerContext = if (maybeTimer.isDefined) {maybeTimer.get.time()} else {null}try {doPostEvent(listener, event)if (Thread.interrupted()) {throw new InterruptedException()}} catch {case ie: InterruptedException =>logError(s"Interrupted while posting to ${Utils.getFormattedClassName(listener)}. " +s"Removing that listener.", ie)removeListenerOnError(listener)case NonFatal(e) =>logError(s"Listener ${Utils.getFormattedClassName(listener)} threw an exception", e)} finally {if (maybeTimerContext != null) {maybeTimerContext.stop()}}}}/*** 将事件发布到指定的侦听器。 保证所有侦听器在同一线程中调用“onPostEvent”。*/protected def doPostEvent(listener: L, event: E): Unitprivate[spark] def findListenersByClass[T <: L : ClassTag](): Seq[T] = {val c = implicitly[ClassTag[T]].runtimeClasslisteners.asScala.filter(_.getClass == c).map(_.asInstanceOf[T]).toSeq}}
org.apache.spark.util.ListenerBus.SparkListenerBus
package org.apache.spark.schedulerimport org.apache.spark.util.ListenerBus/*** SparkListenerEvent事件总线继承ListenerBus类,将SparkListenerEvent事件转发到SparkListenerInterface中。* SparkListenerInterface是一个trait接口类,里面定义了一些关于spark应用运行周期中的一些事件监听器。* SparkListenerEvent是定义了一个事件的通用接口类,其他关于Spark应用运行周期过程中的事件均以 case class实现这个接口*/
private[spark] trait SparkListenerBusextends ListenerBus[SparkListenerInterface, SparkListenerEvent] {// 监听器处理对不同的事件采用不用的处理protected override def doPostEvent(listener: SparkListenerInterface,event: SparkListenerEvent): Unit = {event match {case stageSubmitted: SparkListenerStageSubmitted =>listener.onStageSubmitted(stageSubmitted)case stageCompleted: SparkListenerStageCompleted =>listener.onStageCompleted(stageCompleted)case jobStart: SparkListenerJobStart =>listener.onJobStart(jobStart)case jobEnd: SparkListenerJobEnd =>listener.onJobEnd(jobEnd)case taskStart: SparkListenerTaskStart =>listener.onTaskStart(taskStart)case taskGettingResult: SparkListenerTaskGettingResult =>listener.onTaskGettingResult(taskGettingResult)case taskEnd: SparkListenerTaskEnd =>listener.onTaskEnd(taskEnd)case environmentUpdate: SparkListenerEnvironmentUpdate =>listener.onEnvironmentUpdate(environmentUpdate)case blockManagerAdded: SparkListenerBlockManagerAdded =>listener.onBlockManagerAdded(blockManagerAdded)case blockManagerRemoved: SparkListenerBlockManagerRemoved =>listener.onBlockManagerRemoved(blockManagerRemoved)case unpersistRDD: SparkListenerUnpersistRDD =>listener.onUnpersistRDD(unpersistRDD)case applicationStart: SparkListenerApplicationStart =>listener.onApplicationStart(applicationStart)case applicationEnd: SparkListenerApplicationEnd =>listener.onApplicationEnd(applicationEnd)case metricsUpdate: SparkListenerExecutorMetricsUpdate =>listener.onExecutorMetricsUpdate(metricsUpdate)case executorAdded: SparkListenerExecutorAdded =>listener.onExecutorAdded(executorAdded)case executorRemoved: SparkListenerExecutorRemoved =>listener.onExecutorRemoved(executorRemoved)case executorBlacklisted: SparkListenerExecutorBlacklisted =>listener.onExecutorBlacklisted(executorBlacklisted)case executorUnblacklisted: SparkListenerExecutorUnblacklisted =>listener.onExecutorUnblacklisted(executorUnblacklisted)case nodeBlacklisted: SparkListenerNodeBlacklisted =>listener.onNodeBlacklisted(nodeBlacklisted)case nodeUnblacklisted: SparkListenerNodeUnblacklisted =>listener.onNodeUnblacklisted(nodeUnblacklisted)case blockUpdated: SparkListenerBlockUpdated =>listener.onBlockUpdated(blockUpdated)case speculativeTaskSubmitted: SparkListenerSpeculativeTaskSubmitted =>listener.onSpeculativeTaskSubmitted(speculativeTaskSubmitted)case _ => listener.onOtherEvent(event)}}}
SparkListener
实现了接口SparkListenerInterface
,是它的默认实现类。主要对所有的事件回调做了无操作实现。
事件的存储与转发队列
org.apache.spark.scheduler.AsyncEventQueue
package org.apache.spark.schedulerimport java.util.concurrent.LinkedBlockingQueue
import java.util.concurrent.atomic.{AtomicBoolean, AtomicLong}import com.codahale.metrics.{Gauge, Timer}import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config._
import org.apache.spark.util.Utils/*** 事件的异步队列。 发布到此队列的所有事件都将传递到单独线程中的子侦听器。** 仅当调用 `start()` 方法时才会开始传递事件。 当不需要传递更多事件时,应该调用“stop()”方法。*/
private class AsyncEventQueue(val name: String,conf: SparkConf,metrics: LiveListenerBusMetrics,bus: LiveListenerBus)extends SparkListenerBuswith Logging {import AsyncEventQueue._// 维护了队列前文所述的继承自SparkListenerEvent的样例类事件,默认长度10000。private val eventQueue = new LinkedBlockingQueue[SparkListenerEvent](conf.get(LISTENER_BUS_EVENT_QUEUE_CAPACITY))// 代表未处理的事件个数,从eventQueue弹出的事件不保证处理结束了,所以采用一个单独的变量对事件进行计数private val eventCount = new AtomicLong()/**丢弃事件的计数器。 */private val droppedEventsCounter = new AtomicLong(0L)/** 上次记录“droppedEventsCounter”的时间(以毫秒为单位)。 */@volatile private var lastReportTimestamp = 0Lprivate val logDroppedEvent = new AtomicBoolean(false)private var sc: SparkContext = nullprivate val started = new AtomicBoolean(false)private val stopped = new AtomicBoolean(false)private val droppedEvents = metrics.metricRegistry.counter(s"queue.$name.numDroppedEvents")private val processingTime = metrics.metricRegistry.timer(s"queue.$name.listenerProcessingTime")// 首先删除队列大小计量器,以防它是由从侦听器总线中删除的该队列的先前版本创建的。metrics.metricRegistry.remove(s"queue.$name.size")metrics.metricRegistry.register(s"queue.$name.size", new Gauge[Int] {override def getValue: Int = eventQueue.size()})// 事件转发的常驻线程,不停的调用dispatch()进行事件转发private val dispatchThread = new Thread(s"spark-listener-group-$name") {setDaemon(true)override def run(): Unit = Utils.tryOrStopSparkContext(sc) {dispatch()}}private def dispatch(): Unit = LiveListenerBus.withinListenerThread.withValue(true) {var next: SparkListenerEvent = eventQueue.take()while (next != POISON_PILL) {val ctx = processingTime.time()try {// 通过事件总线将事件转发到所有的注册的监听器中。super.postToAll(next)} finally {ctx.stop()}eventCount.decrementAndGet()next = eventQueue.take()}eventCount.decrementAndGet()}override protected def getTimer(listener: SparkListenerInterface): Option[Timer] = {metrics.getTimerForListenerClass(listener.getClass.asSubclass(classOf[SparkListenerInterface]))}/*** 启动一个dispatchThread线程将事件分派给监听器。** @param sc Used to stop the SparkContext in case the async dispatcher fails.*/private[scheduler] def start(sc: SparkContext): Unit = {if (started.compareAndSet(false, true)) {this.sc = scdispatchThread.start()} else {throw new IllegalStateException(s"$name already started!")}}/*** 停止监听器总线。 它将等待,直到处理完排队的事件,但新事件将被丢弃。* 插入POISON_PILL,dispatchThread线程读取到POISON_PIL时就会停止事件的分发*/private[scheduler] def stop(): Unit = {if (!started.get()) {throw new IllegalStateException(s"Attempted to stop $name that has not yet started!")}if (stopped.compareAndSet(false, true)) {eventCount.incrementAndGet()eventQueue.put(POISON_PILL)}if (Thread.currentThread() != dispatchThread) {dispatchThread.join()}}// 向队列中添加事件,如果队列满了,丢弃当前事件并记录日志。这是个生产者消费者模型,当队列满时生产者丢弃事件,但队列为空时消费者等待生产者。def post(event: SparkListenerEvent): Unit = {if (stopped.get()) {return}eventCount.incrementAndGet()if (eventQueue.offer(event)) {return}// 向eventQueue添加事件失败后的逻辑eventCount.decrementAndGet()droppedEvents.inc()droppedEventsCounter.incrementAndGet()if (logDroppedEvent.compareAndSet(false, true)) {logError(s"Dropping event from queue $name. " +"This likely means one of the listeners is too slow and cannot keep up with " +"the rate at which tasks are being started by the scheduler.")}logTrace(s"Dropping event $event")val droppedCount = droppedEventsCounter.getif (droppedCount > 0) {// 为了控制日志的输出频率。采用1分钟输出一次。if (System.currentTimeMillis() - lastReportTimestamp >= 60 * 1000) {if (droppedEventsCounter.compareAndSet(droppedCount, 0)) {val prevLastReportTimestamp = lastReportTimestamplastReportTimestamp = System.currentTimeMillis()val previous = new java.util.Date(prevLastReportTimestamp)logWarning(s"Dropped $droppedCount events from $name since $previous.")}}}}/*** For testing only. Wait until there are no more events in the queue.*/def waitUntilEmpty(deadline: Long): Boolean = {while (eventCount.get() != 0) {if (System.currentTimeMillis > deadline) {return false}Thread.sleep(10)}true}override def removeListenerOnError(listener: SparkListenerInterface): Unit = {bus.removeListener(listener)}}private object AsyncEventQueue {val POISON_PILL = new SparkListenerEvent() { }}
spark运行事件总线
org.apache.spark.scheduler.LiveListenerBus
package org.apache.spark.schedulerimport java.util.{List => JList}
import java.util.concurrent._
import java.util.concurrent.atomic.{AtomicBoolean, AtomicLong}import scala.collection.JavaConverters._
import scala.collection.mutable
import scala.reflect.ClassTag
import scala.util.DynamicVariableimport com.codahale.metrics.{Counter, MetricRegistry, Timer}import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config._
import org.apache.spark.metrics.MetricsSystem
import org.apache.spark.metrics.source.Source/*** SparkListenerEvent事件管理器* 将 SparkListenerEvents 异步传递给已注册的 SparkListener。** 在调用`start()`之前,所有发布的事件都只会被缓冲。 只有在此侦听器总线启动后,事件才会实际传播到所有连接的侦听器。 当调用 stop() 时,该监听器总线将停止,停止后它将丢弃更多事件。*/
private[spark] class LiveListenerBus(conf: SparkConf) {import LiveListenerBus._private var sparkContext: SparkContext = _private[spark] val metrics = new LiveListenerBusMetrics(conf)// 表示是否调用了`start()`方法==>总线已启动private val started = new AtomicBoolean(false)// 表示是否调用了`stop()`方法==>总线已启动private val stopped = new AtomicBoolean(false)/** 事件放弃计数器 */private val droppedEventsCounter = new AtomicLong(0L)/** 上次记录“droppedEventsCounter”的时间(以毫秒为单位)。 */@volatile private var lastReportTimestamp = 0Lprivate val queues = new CopyOnWriteArrayList[AsyncEventQueue]()// Visible for testing.@volatile private[scheduler] var queuedEvents = new mutable.ListBuffer[SparkListenerEvent]()/**将侦听器添加到所有非内部侦听器共享的队列中。 */def addToSharedQueue(listener: SparkListenerInterface): Unit = {addToQueue(listener, SHARED_QUEUE)}/** 将监听器添加到执行器管理队列中。 */def addToManagementQueue(listener: SparkListenerInterface): Unit = {addToQueue(listener, EXECUTOR_MANAGEMENT_QUEUE)}/** 将侦听器添加到应用程序状态队列。*/def addToStatusQueue(listener: SparkListenerInterface): Unit = {addToQueue(listener, APP_STATUS_QUEUE)}/** 将监听器添加到事件日志队列. */def addToEventLogQueue(listener: SparkListenerInterface): Unit = {addToQueue(listener, EVENT_LOG_QUEUE)}/*** 将侦听器添加到特定队列,并根据需要创建新队列。 * 队列彼此独立(每个队列使用单独的线程来传递事件),允许较慢的侦听器在一定程度上与其他侦听器隔离。*/private[spark] def addToQueue(listener: SparkListenerInterface,queue: String): Unit = synchronized {if (stopped.get()) {throw new IllegalStateException("LiveListenerBus is stopped.")}// 先寻找队列是否存在,如果存在就注册,不存在就创建新队列并注册queues.asScala.find(_.name == queue) match {case Some(queue) =>queue.addListener(listener)case None =>val newQueue = new AsyncEventQueue(queue, conf, metrics, this)newQueue.addListener(listener)if (started.get()) {newQueue.start(sparkContext)}queues.add(newQueue)}}def removeListener(listener: SparkListenerInterface): Unit = synchronized {// 从添加到的所有队列中删除侦听器,并停止已变空的队列。queues.asScala.filter { queue =>queue.removeListener(listener)queue.listeners.isEmpty()}.foreach { toRemove =>if (started.get() && !stopped.get()) {toRemove.stop()}queues.remove(toRemove)}}/** 将事件转发到所有的队列中 */def post(event: SparkListenerEvent): Unit = {if (stopped.get()) {return}metrics.numEventsPosted.inc()// 如果事件缓冲区为空,则意味着总线已启动,我们可以避免同步并将事件直接发布到队列中。 这应该是事件总线生命周期中最常见的情况。if (queuedEvents == null) {postToQueues(event)return}// 否则,需要同步检查总线是否启动,以确保调用 start() 的线程拾取新事件。synchronized {if (!started.get()) {queuedEvents += eventreturn}}// 如果进行上述检查时总线已经启动,则直接发送到队列。postToQueues(event)}// 遍历所有队列进行事件分发private def postToQueues(event: SparkListenerEvent): Unit = {val it = queues.iterator()while (it.hasNext()) {it.next().post(event)}}/*** 启动每个队列,并发送queuedEvents中缓存的事件。每个队列就开始消费之前post的事件并调用postToAll()方法将事件发送给监视器。** 这首先发送在此侦听器总线启动之前发布的所有缓冲事件,然后在侦听器总线仍在运行时异步侦听任何其他事件。* 这应该只被调用一次。** @param sc Used to stop the SparkContext in case the listener thread dies.*/def start(sc: SparkContext, metricsSystem: MetricsSystem): Unit = synchronized {if (!started.compareAndSet(false, true)) {throw new IllegalStateException("LiveListenerBus already started.")}this.sparkContext = scqueues.asScala.foreach { q =>q.start(sc)queuedEvents.foreach(q.post)}queuedEvents = nullmetricsSystem.registerSource(metrics)}/*** Exposed for testing.*/@throws(classOf[TimeoutException])def waitUntilEmpty(timeoutMillis: Long): Unit = {val deadline = System.currentTimeMillis + timeoutMillisqueues.asScala.foreach { queue =>if (!queue.waitUntilEmpty(deadline)) {throw new TimeoutException(s"The event queue is not empty after $timeoutMillis ms.")}}}/*** 停止监听器总线。 它将等待,直到处理完排队的事件,但在停止后删除新事件。*/def stop(): Unit = {if (!started.get()) {throw new IllegalStateException(s"Attempted to stop bus that has not yet started!")}if (!stopped.compareAndSet(false, true)) {return}synchronized {queues.asScala.foreach(_.stop())queues.clear()}}// For testing only.private[spark] def findListenersByClass[T <: SparkListenerInterface : ClassTag](): Seq[T] = {queues.asScala.flatMap { queue => queue.findListenersByClass[T]() }}// For testing only.private[spark] def listeners: JList[SparkListenerInterface] = {queues.asScala.flatMap(_.listeners.asScala).asJava}// For testing only.private[scheduler] def activeQueues(): Set[String] = {queues.asScala.map(_.name).toSet}}private[spark] object LiveListenerBus {// Allows for Context to check whether stop() call is made within listener threadval withinListenerThread: DynamicVariable[Boolean] = new DynamicVariable[Boolean](false)private[scheduler] val SHARED_QUEUE = "shared"private[scheduler] val APP_STATUS_QUEUE = "appStatus"private[scheduler] val EXECUTOR_MANAGEMENT_QUEUE = "executorManagement"private[scheduler] val EVENT_LOG_QUEUE = "eventLog"
}private[spark] class LiveListenerBusMetrics(conf: SparkConf)extends Source with Logging {override val sourceName: String = "LiveListenerBus"override val metricRegistry: MetricRegistry = new MetricRegistryval numEventsPosted: Counter = metricRegistry.counter(MetricRegistry.name("numEventsPosted"))// Guarded by synchronization.private val perListenerClassTimers = mutable.Map[String, Timer]()def getTimerForListenerClass(cls: Class[_ <: SparkListenerInterface]): Option[Timer] = {synchronized {val className = cls.getNameval maxTimed = conf.get(LISTENER_BUS_METRICS_MAX_LISTENER_CLASSES_TIMED)perListenerClassTimers.get(className).orElse {if (perListenerClassTimers.size == maxTimed) {logError(s"Not measuring processing time for listener class $className because a " +s"maximum of $maxTimed listener classes are already timed.")None} else {perListenerClassTimers(className) =metricRegistry.timer(MetricRegistry.name("listenerProcessingTime", className))perListenerClassTimers.get(className)}}}}}
Spark任务启动时,会在SparkContext
中启动spark运行的事件总线(LiveListenerBus)
private def setupAndStartListenerBus(): Unit = {try {conf.get(EXTRA_LISTENERS).foreach { classNames =>val listeners = Utils.loadExtensions(classOf[SparkListenerInterface], classNames, conf)listeners.foreach { listener =>listenerBus.addToSharedQueue(listener)logInfo(s"Registered listener ${listener.getClass().getName()}")}}} catch {case e: Exception =>try {stop()} finally {throw new SparkException(s"Exception when registering SparkListener", e)}}// 启动应用的运行事件总线listenerBus.start(this, _env.metricsSystem)_listenerBusStarted = true}