基于DCT变换的图像压缩解压缩算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1、DCT变换原理

4.2、基于DCT的图像压缩

4.3、基于DCT的图像解压缩

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

....................................................................
%调用8x8矩阵的量化等级  
load Q10.mat% 对R、G、B通道应用压缩函数func_ys,得到压缩后的图像Rys、Gys、Bys  
Rys  = func_ys(R1,Coff_dct,Q_dct,Bsize);
Gys  = func_ys(G1,Coff_dct,Q_dct,Bsize);
Bys  = func_ys(B1,Coff_dct,Q_dct,Bsize);% 将压缩后的通道数据合并成一个新的图像I1ys  
I1ys(:,:,1) = Rys;
I1ys(:,:,2) = Gys;
I1ys(:,:,3) = Bys;
imwrite(I1ys,'TMPS\Iys.jpg');% 将图像I1ys写入到文件'TMPS\Iys.jpg'中  % 对压缩后的图像应用解压缩函数func_deys,得到解压缩后的图像Rdeys、Gdeys、Bdeys  
Rdeys        = func_deys(Rys,Coff_dct,Q_dct,Bsize);
Gdeys        = func_deys(Gys,Coff_dct,Q_dct,Bsize);
Bdeys        = func_deys(Bys,Coff_dct,Q_dct,Bsize);
% 将解压缩后的通道数据合并成一个新的图像I2deys,并转换为uint8类型  
I2deys(:,:,1) = uint8(Rdeys);
I2deys(:,:,2) = uint8(Gdeys);
I2deys(:,:,3) = uint8(Bdeys);
imwrite(I2deys,'TMPS\Ideys.jpg');% 将图像I2deys写入到文件'TMPS\Ideys.jpg'中  % 获取原始图像文件和压缩后的图像文件的大小(字节) %压缩率
ys_rate = SIZE1/SIZE2;% 显示三个图像:压缩后的图像、解压后的图像、原始图像  
figure(1)
subplot(131)
imshow(I1ys);
title('压缩图像')
subplot(132)
imshow(I2deys);
title('解压图像')
subplot(133)
imshow(I0);
title('原始图像')I00 = imread('TMPS\Ideys.jpg');
err = (double(I0) - double(I00)) .^ 2;
mse1= sum(err(:)) / (64*64); 
%PSNR 
Max_pixel = 255;
PSNR      = 20*log10((Max_pixel^2)./sqrt(mse1));save R1.mat ys_rate PSNR
00084

4.算法理论概述

       基于DCT(离散余弦变换)的图像压缩与解压缩算法。我们深入探讨了DCT变换的原理、其在图像编码中的应用,并给出了相应的数学公式和算法实现细节。随着数字技术的快速发展,图像数据在日常生活中呈现爆炸性增长。因此,如何有效地压缩图像数据,同时确保良好的图像质量,成为了一个重要的研究课题。DCT变换由于其良好的能量集中特性和与人类视觉系统的匹配度,被广泛应用于图像压缩标准中,如JPEG。

4.1、DCT变换原理

      离散余弦变换(DCT)是傅里叶变换的一种变种。它将信号从时域变换到频域,使得信号的能量大部分集中在几个频率分量上。对于图像而言,DCT可以有效地将图像的能量集中在左上角的低频部分。

一维DCT变换公式如下:

      二维DCT变换(通常用于图像处理)可以通过两次一维DCT变换实现,首先对行进行变换,再对列进行变换。

        可以发现,二维DCT变换其实是在一维DCT变换的基础上,再做一次一维DCT变换。二维DCT也可以写成矩阵相乘的形式:

         二维DCT变换的复杂度达到O(n^4),所以进行DCT变换的矩阵不宜过大。在实际处理图片的过程中,需要先把矩阵分块,一般分为8x8或16x16大小,这样DCT变换不至于耗费过多的时间。

4.2、基于DCT的图像压缩

基于DCT的图像压缩主要步骤如下:

分块:将原始图像分为8x8或16x16的小块。
DCT变换:对每个小块进行二维DCT变换。
量化:使用预定的量化表对DCT系数进行量化,这一步骤是有损的,会丢失部分信息。
编码:采用Zig-Zag扫描将量化后的系数排列为一维序列,并使用霍夫曼编码进行进一步压缩。
通过以上的步骤,我们可以实现图像的压缩。需要注意的是,量化步骤是有损的,因此解压后的图像与原始图像会存在一定的差异。

4.3、基于DCT的图像解压缩

解压缩是压缩的逆过程,主要包括以下步骤:

解码:使用霍夫曼解码对编码后的数据流进行解码。
反量化:使用与压缩时相同的量化表对解码后的数据进行反量化。
反DCT变换:对反量化后的数据进行二维反DCT变换。
重构:将反DCT变换后的块组合成完整的图像。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165034.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动态loading

项目中需要用到动图loading的地方可以下载 https://www.intogif.com/loading/ 高级点的还有css动画;692 Loaders: CSS & Tailwind 692 Loaders: CSS & Tailwind

【Python】np.unique() 介绍与使用

简述 numpy.unique:用于去除数组中重复元素,并从小到大排序(找到唯一元素并排序)。 def unique(ar, return_indexFalse, return_inverseFalse,return_countsFalse, axisNone):ar: 这是输入的数组或类数组对象。return_index: 如…

【数字信号处理】傅里叶变换的离散性与周期性

傅里叶变换的离散性与周期性 2023年11月21日 #elecEngeneer 文章目录 傅里叶变换的离散性与周期性1. 符号说明2. 具体分析3. 序列的序号表示的DFT下链 1. 符号说明 t : 连续时间(时域)变量 ω : 频域变量,aka角频率 g : 时域函数 G : 频域函数 n : 时域采样序列序号…

MAV3D:从文本描述中生成三维动态场景

Singer U, Sheynin S, Polyak A, et al. Text-to-4d dynamic scene generation[J]. arXiv preprint arXiv:2301.11280, 2023. MAV3D 是 Meta AI 研究者们提出的一种从文本描述生成三维动态场景的方法。从所提供的文本生成的动态视频输出可以从任何摄像机位置和角度查看&#xf…

Rust语言入门教程(一) - 简介及Cargo使用

Rust编程入门 为什么学习Rust 我本人是一个DevOps工程师,并不是专职的开发人员,但需要了解各种各样的语言的基本知识和特性,以便在不同的项目中帮助开发人员设计软件架构,部署流程以及进行错误排查和调试。但是对任何新生的优秀…

springboot 外部化配置

背景:修改jar包中的配置比较麻烦 项目部署的时候放一个配置文件在jar包外 配置文件优先级: 1.jar包内的application.properties/yaml 2.jar包内的application-{profile}.properties/yaml 3.jar包外的application.properties/yaml 4.jar包外的application-{profile}.properties…

【算法】缓存淘汰算法

目录 1.概述2.代码实现2.1.FIFO2.2.LRU2.3.LFU2.4.Clock2.5.Random 3.应用 1.概述 缓存淘汰策略是指在缓存容量有限的情况下,当缓存空间不足时决定哪些缓存项应当被移除的策略。缓存淘汰策略的目标是尽可能地保持缓存命中率高,同时合理地利用有限的缓存…

(保姆级教程)Mysql中事务的概念,什么是事务,如何使用事务,以及事务的隔离级别,什么是脏读、幻读,代码演示

继续讲解 Mysql 数据库中最重要的一个概念:事务 文章目录 事务1.1 什么是事务1.2 执行原理1.3 如何操作事务1.4 事务的特点(ACID原则)1.5 事务并发1.6 事务隔离级别1.6.1 事务并发问题操作演示1.6.2 脏读演示1.6.3 不可重复读演示1.6.4 幻读演…

二叉树的顺序结构及实现

目录 1 二叉树的顺序结构2. 堆的概念及结构3 .堆的实现(小堆) 1 二叉树的顺序结构 普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,…

【Pytorch】Visualization of Feature Maps(3)

学习参考来自: Image Style Transform–关于图像风格迁移的介绍github:https://github.com/wmn7/ML_Practice/tree/master/2019_06_03 文章目录 风格迁移 风格迁移 风格迁移出处: 《A Neural Algorithm of Artistic Style》(ar…

浏览器没收到返回,后端也没报错,php的json_encode问题bug

今天网站遇到个问题,后端返回异常,但是浏览器状态码200,但是看不到结果。经过排查发现,我们在返回结果的时候使用了json_encode返回给前端,结果里面的字符编码异常,导致json_encode异常,但是php…

前缀和——724. 寻找数组的中心下标

文章目录 🍓1. 题目🫒2. 算法原理🦄解法一:暴力枚举🦄解法二:前缀和 🥔3. 代码实现 🍓1. 题目 题目链接:724. 寻找数组的中心下标 - 力扣(LeetCode&#xff0…

【限时免费】20天拿下华为OD笔试之【前缀和】2023B-数字游戏【欧弟算法】全网注释最详细分类最全的华为OD真题题解

文章目录 题目描述与示例题目描述输入描述输出描述示例一输入输出 示例二输入输出说明 解题思路前缀和简单的数学推导哈希集合的使用 代码PythonJavaC时空复杂度 华为OD算法/大厂面试高频题算法练习冲刺训练 题目描述与示例 题目描述 小明玩一个游戏。 系统发1n张牌&#xff…

某60区块链安全之未初始化的存储指针实战一学习记录

区块链安全 文章目录 区块链安全未初始化的存储指针实战一实验目的实验环境实验工具实验原理实验过程 未初始化的存储指针实战一 实验目的 学会使用python3的web3模块 学会分析以太坊智能合约未初始化的存储指针漏洞 找到合约漏洞进行分析并形成利用 实验环境 Ubuntu18.04操…

深度学习之八(生成对抗网络--Generative Adversarial Networks,GANs)

概念 生成对抗网络(Generative Adversarial Networks, GANs)是一种深度学习模型,由 Ian Goodfellow 等人于2014年提出。GAN 的目标是通过训练两个神经网络(生成器和判别器),使得生成器能够生成与真实数据相似的样本,而判别器能够区分真实样本和生成样本。这两个网络相…

多元逻辑回归模型的概念、模型检验以及应用

多元逻辑回归是逻辑回归的一种扩展,用于处理多类别分类问题。在二元逻辑回归中,我们通过一个逻辑函数(也称为S形函数)将输入特征映射到一个概率值,用于预测两个类别中一个的概率。而在多元逻辑回归中,我们面…

沃趣班11月月考题目解析

沃趣班11月月考题目解析 1.在oracle中创建用户时,若未设置default tablespace关键字,则oracle将哪个表空间分配给用户作为默认表空间 答案:D.user SQL> create user mytest identified by 123456; SQL> grant connect to mytest; SQL…

【开源】基于Vue.js的海南旅游景点推荐系统的设计和实现

项目编号: S 023 ,文末获取源码。 \color{red}{项目编号:S023,文末获取源码。} 项目编号:S023,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四…

CSS特效017:球体涨水的效果

CSS常用示例100专栏目录 本专栏记录的是经常使用的CSS示例与技巧,主要包含CSS布局,CSS特效,CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点,CSS特效主要是一些动画示例,CSS花边是描述了一些CSS…

前端错误处理与调试

** javascript错误处理 ** 由于javascript本身是动态语言,而且没有固定的开发工具,因此他普遍认为是最难以调试的语言,在ECMAScript3新增了try-catch和throw以及一些错误类型,让开发人员能适当的处理错误,紧接着web浏…