【机器学习 | 白噪声检验】检验模型学习成果 检验平稳性最佳实践,确定不来看看?

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (一)
作者: 计算机魔术师
版本: 1.0 ( 2023.8.27 )

摘要: 本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

白噪声检验

白噪声序列是一种在统计学和信号处理中常见的随机过程。它具有一些特定的特性,使其在各个频率上具有均匀的能量分布。由一系列相互独立、具有相同概率分布的随机变量组成的。这些随机变量之间没有任何相关性,因此在时间上是完全不相关的。这意味着序列中的每个值都是独立地从相同的概率分布中生成的。

其名称来源于光学中的类比。在光学中,白光是由各种频率的光波混合而成的,这些光波具有均匀的能量分布。类似地,白噪声序列在频率域上具有均匀的能量分布,从低频到高频都有相似的能量。

白噪声序列在许多领域中都有应用,包括信号处理、通信系统、金融市场建模等。它常被用作基准参考,用于比较其他信号或系统的性能。此外,白噪声序列还用于测试和校准设备,以及进行随机性分析和模拟实验。

在时间序列中,白噪声检验除了用于在预测前判断平稳序列是否随机外,还能有哪些用法呢?

-- 检验残差是否为白噪声,判断模型拟合的是否足够好,是否还存在有价值的信息待提取。

\1. 残差为白噪声,说明模型拟合的很好,残差部分为无法捕捉的纯随机数据。
\2. 残差非白噪声,说明模型哪里出了问题,比如参数没调好,需要继续优化;若如何优化模型也无法使得残差为白噪声,换模型或者集成模型,或者对残差进行二次预测。

白噪声的定义很简单,只要满足以下3个条件即可:
\1) E(εt)=μ
\2) Var(εt)=σ2
\3) Cov(εt,εs)=0,t≠s
另外一种常见的定义方式为一个具有零均值同方差的独立同分布的序列为白噪声。

白噪声检验方法常用有以下3种方法(自相关图Box-Pierce检验Ljung-Box检验),其中Ljung-Box检验相对用的多一些,在调用statsmodels库的acf函数计算自相关系数时,指定qstat=True,会同时返回对应滞后期数下的Ljung-Box检验结果。

自相关图

由定义知,白噪声完全无自相关性,除0阶自相关系数为1外,理想情况下∀k,(k>0) ,延迟k阶的样本自相关系数均为0。实际上由于样本序列的有限性,延迟k阶自相关系数并不完全为0,只要在0值附近即认为无自相关性。

由于随机扰动的存在,自相关系数并不严格等于0,我们期望在95%的置信度下,即相关系数均在 ±2/T 之间。如果一个序列中有较多自相关系数的值在边界之外,那么该序列很可能不是白噪声序列。上图中自相关系数均在边界之内,为白噪声序列。

Ljung-Box检验

实际应用中人们发现 Q 统计量在大样本场合( n 很大的场合)检验效果很好(传统检验方法中样本量大于30即认为大样本量,Joel等人指出当样本量在500这个量级时 Q 统计量检验效果较好),但是在小样本场合不太精确。为了弥补这一缺陷,Box和Ljung于1979年对其进行了改进,推导出LB(Ljung-Box)统计量。

假设条件:

  • H0:ρ1=ρ2=…=ρm=0 (滞后m阶序列值之间相互独立,序列为独立同分布的白噪声)
  • H1:∃ρk≠0$,1<=k<=m (滞后 m 阶序列值之间有相关性,序列为非独立同分布的白噪声)
    其中, ρk 为延迟k阶的自相关系数, m 为最大延迟阶数。

检验统计量: Q L B = n ( n + 2 ) ∑ k = 1 m ρ k 2 / n − k Q_{LB}=n(n+2)∑_{k=1}^mρ^{2}_k/n−k QLB=n(n+2)k=1mρk2/nk

LB统计量同样近似服从自由度为 m 的 χ2 分布。其中, n 为序列观察期数, m 为指定的最大延迟阶数, ρ^__k 为延迟 k 阶自相关系数的估计值。

由于LB统计量就是Box和Pierce的Q统计量的修正,所以人们习惯把它们统称为Q统计量。

判断准则:

LB统计量小于选定置信水平下的临界值,或者 p 值大于显著性水平(如0.05),不能拒绝原假设,序列为白噪声;

LB统计量大于选定置信水平下的临界值,或者 p 值小于显著性水平(如0.05),拒绝原假设,序列非白噪声;

实践环节:

序列检验
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.stats.diagnostic import acorr_ljungboxnp.random.seed(123)
# 白噪音
white_noise=np.random.standard_normal(size=100)# 不再指定boxpierce参数,近返回QLB统计量检验结果
# 同时设置lags参数为一个列表,相应只返回对应延迟阶数的检验结果
res = acorr_ljungbox(white_noise, lags=[6,12,24,48], return_df=True)
print(res)

在这里插入图片描述

延迟6阶、12阶时 p值较大,增加到延迟24阶时,p值略小但也大于0.05,所以在95%的置信水平下认为序列为白噪声。(这部分则是随机序列的偶然因素了)

还有一种实现Ljung-Box检验的方式为,调用statsmodels包中的acf函数,计算自相关系数时指定qstat为True,表示返回结果中除返回自相关系数外,另返回自相关系数的独立性检验结果 QLB 统计量及对应 p 值。

import numpy as np
import pandas as pd
import statsmodels as smnp.random.seed(123)
white_noise=np.random.standard_normal(size=100)r, q, p = sm.tsa.stattools.acf(white_noise, nlags=12, qstat=True) # 额外返回q p 统计量
df = pd.DataFrame(zip(range(1,41), q, p), columns=['lag', 'lb_stat', 'lb_pvalue'])
print(df)

在这里插入图片描述

举一个为非白噪声的例子(太阳黑子)

import matplotlib.pyplot as plt
import statsmodels.api as sm
data = sm.datasets.sunspots.load_pandas().data
data = data.set_index('YEAR')res = acorr_ljungbox(data.SUNACTIVITY, lags=[6,12,24], boxpierce=True, return_df=True)
print(res)data.plot(figsize=(12, 4))
plt.show()

在这里插入图片描述

显而易见的数据有着周期性。

模型效果检验

而在检验模型效果的应用中,假设我们有一个时间序列数据如下:

[1.2, 2.4, 3.1, 4.6, 5.3, 6.8, 7.5, 8.9, 9.7, 10.2]

我们可以使用ARIMA模型对该数据进行拟合,并得到残差序列。然后,我们可以进行Ljung-Box白噪声检验来判断残差序列是否存在自相关。

import numpy as np
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.stats.diagnostic import acorr_ljungbox# 原始数据
data = np.array([1.2, 2.4, 3.1, 4.6, 5.3, 6.8, 7.5, 8.9, 9.7, 10.2])# 拟合ARIMA模型,得到残差序列
model = ARIMA(data, order=(1, 0, 0))  # 这里以ARIMA(1, 0, 0)为例
model_fit = model.fit(disp=0)
residuals = model_fit.resid # 训练数据中的残差# 进行Ljung-Box白噪声检验
lbvalue, pvalue = acorr_ljungbox(residuals, lags=5)  # 检验前5个滞后期# 打印检验结果
print("Ljung-Box白噪声检验结果:")
for lag, p in enumerate(pvalue):print(f"滞后期{lag+1}:p-value={p}")

运行以上代码,我们可以得到如下的检验结果:

Ljung-Box白噪声检验结果:
滞后期1:p-value=0.8811740567913574
滞后期2:p-value=0.9395957812016121
滞后期3:p-value=0.9444992061584102
滞后期4:p-value=0.9826682340484362
滞后期5:p-value=0.9658631275329448

在这个案例中,我们可以看到每个滞后期的p-value都远大于0.05,意味着残差序列在这些滞后期上没有显著的自相关。因此,我们可以认为残差序列是一个白噪声序列,即没有自相关(模型效果优秀)。

参考文章:

https://zhuanlan.zhihu.com/p/430365631

在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/164536.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ Day09 容器

C-STL01- 容器 引入 我们想存储多个学员的信息 , 现在学员数量不定 通过以前学习的知识 , 我们可以创建一个数组存储学员的信息 但是这个数组大小是多少呢 ? 过大会导致空间浪费 , 小了又需要扩容 对其中的数据进行操作也较为复杂 每次删除数据后还要对其进行回收等操作…

cookie的跨站策略 跨站和跨域

借鉴&#xff1a;Cookie Samesite简析 - 知乎 (zhihu.com) 1、跨站指 协议、域名、端口号都必须一致 2、跨站 顶级域名二级域名 相同就行。cookie遵循的是跨站策略

PowerDesigner异构数据库转换

主要流程:sql->pdm->cdm->other pdm->sql 1.根据sql生成pdm 2.根据pdm生成cdm 3.生成其他类型数据库pdm

【Java】认识String类

文章目录 一、String类的重要性二、String类中的常用方法1.字符串构造2.String对象的比较3.字符串查找4.转换5.字符串替换6.字符串拆分7.字符串截取8.其他操作方法9.字符串的不可变性10.字符串修改 三、StringBuilder和StringBuffer 一、String类的重要性 在C语言中已经涉及到…

C语言第二十五弹--打印菱形

C语言打印菱形 思路&#xff1a;想要打印一个菱形&#xff0c;可以分为上下两部分&#xff0c;通过观察可以发现上半部分星号的规律是 1 3 5 7故理解为 2对应行数 1 &#xff0c;空格是4 3 2 1故理解为 行数-对应行数-1。 上半部分代码如下 for (int i 0;i < line;i){//上…

Vivado Modelsim联合进行UVM仿真指南

打开Vivado&#xff0c;打开对应工程&#xff0c;点击左侧Flow Navigator-->PROJECT MANAGER-->Settings&#xff0c;打开设置面板。点击Project Settings-->Simulation选项卡&#xff0c;如下图所示。 将Target simulator设为Modelsim Simulator。 在下方的Compil…

OpenGL 绘制圆形平面(Qt)

文章目录 一、简介二、代码实现三、实现效果一、简介 这里使用一种简单的思路来生成一个圆形平面: 首先,我们需要生成一个单位圆,半径为1,法向量为(0, 0, 1),这一步我们可以使用一些函数生成圆形点集。之后,指定面片的索引生成一个圆形平面。当然这里为了后续管理起来方便…

Py之PyMuPDF:PyMuPDF的简介、安装、使用方法之详细攻略

Py之PyMuPDF&#xff1a;PyMuPDF的简介、安装、使用方法之详细攻略 目录 PyMuPDF的简介 PyMuPDF的安装 PyMuPDF的使用方法 1、基础用法 PyMuPDF的简介 PyMuPDF是一个高性能的Python库&#xff0c;用于PDF(和其他)文档的数据提取&#xff0c;分析&#xff0c;转换和操作。 …

Matrix

Matrix 如下是四种变换对应的控制参数&#xff1a; Rect 常用的一个“绘画相关的工具类”&#xff0c;常用来描述长方形/正方形&#xff0c;他只有4个属性&#xff1a; public int left; public int top; public int right; public int bottom; 这4个属性描述着这一个“方块…

基于JavaWeb+SSM+Vue校园水电费管理小程序系统的设计和实现

基于JavaWebSSMVue校园水电费管理小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 摘 要 III Abstract 1 1 系统概述 2 1.1 概述 2 1.2课题意义 3 1.3 主要内容 3…

使用【画图】软件修改图片像素、比例和大小

打开电脑画图软件&#xff0c;点击开始 windows附件 画图 在画图软件里选择需要调整的照片&#xff0c;点击文件 打开 在弹出窗口中选择照片后点击打开 照片在画图软件中打开后&#xff0c;对照片进行调整。按图中顺序进行 确定后照片会根据设定的值自动调整 保存…

Codeforces Round 745 (Div. 2)(C:前缀和+滑动窗口,E:位运算加分块)

Dashboard - Codeforces Round 745 (Div. 2) - Codeforces A&#xff1a; 答案就是2n!/2, 对于当前满足有k个合法下标的排列&#xff0c;就是一个n-k个不合法的下标的排列&#xff0c; 所以每一个合法排列都相反的存在一个 对称性 #include<bits/stdc.h> using nam…

【Redisson】基于自定义注解的Redisson分布式锁实现

前言 在项目中&#xff0c;经常需要使用Redisson分布式锁来保证并发操作的安全性。在未引入基于注解的分布式锁之前&#xff0c;我们需要手动编写获取锁、判断锁、释放锁的逻辑&#xff0c;导致代码重复且冗长。为了简化这一过程&#xff0c;我们引入了基于注解的分布式锁&…

JS获取时间戳的五种方法

一、JavasCRIPT时间转时间戳 JavaScript获得时间戳的方法有五种&#xff0c;后四种都是通过实例化时间对象new Date() 来进一步获取当前的时间戳&#xff0c;JavaScript处理时间主要使用时间对象Date。 方法一&#xff1a;Date.now() Date.now()可以获得当前的时间戳&#x…

思维模型 等待效应

本系列文章 主要是 分享 思维模型 &#xff0c;涉及各个领域&#xff0c;重在提升认知。越是等待&#xff0c;越是焦虑。 1 等待效应的应用 1.1 等待效应在管理中的应用 西南航空公司是一家美国的航空公司&#xff0c;它在管理中运用了等待效应。西南航空公司鼓励员工在工作中…

快速学会使用Python3.12的新特性

一、 PEP 695: 类型形参语法的革新 PEP 695 在 Python 3.12 中引入了一种新颖且更为清晰的方式来定义泛型类和函数&#xff0c;旨在提升类型参数的明确性和简洁性。这个提案不仅改善了类型系统的可读性&#xff0c;还增强了其功能性。以下是这些变化的详细概述&#xff1a; 1…

(四)C语言之符号常量概述

&#xff08;四&#xff09;C语言之符号常量概述 一、符号常量概述 一、符号常量概述 在程序中使用像300,20等这样的等类似的“幻数”不是一个好的习惯&#xff0c;它们无法向阅读该程序的人提供更多有用的信息&#xff0c;从而使得修改程序变得困难。处理这种幻数的一种方法是…

unreal 指定windows SDK

路径 &#xff1a; “C:\Users\Administrator\AppData\Roaming\Unreal Engine\UnrealBuildTool\BuildConfiguration.xml” 在Configuration中添加 <WindowsPlatform><WindowsSdkVersion>10.0.20348.0</WindowsSdkVersion></WindowsPlatform>示例&…

R数据分析:集成学习方法之随机生存森林的原理和做法,实例解析

很久很久以前给大家写过决策树&#xff0c;非常简单明了的算法。今天给大家写随机&#xff08;生存&#xff09;森林&#xff0c;随机森林是集成了很多个决策数的集成模型。像随机森林这样将很多个基本学习器集合起来形成一个更加强大的学习器的这么一种集成思想还是非常好的。…

算法面试题:反转一个整数

题目&#xff1a;反转一个整数。例如&#xff0c;输入123&#xff0c;输出321&#xff1b;输入-456&#xff0c;输出-654。注意&#xff1a;反转后的整数在32位带符号整数范围内。 编写一个函数 reverseInteger(x: int) -> int 来实现这个功能。 答案&#xff1a; def re…