光谱图像超分 Benchmark

光谱图像超分 Benchmark

文章目录

  • 光谱图像超分 Benchmark
    • 0. pioneer工作及综述
    • 基于深度学习的高光谱多光谱融合(updating)
    • 1. 空间光谱图像超分 (to be updated)
    • 2. 高分辨率多光谱图像超分(to be updated)
    • 3. 单张高光谱图像超分(to be updated)
    • 4. 高光谱多光谱融合超分(to be updated)
      • 1) Bayesian based approaches
      • 2) Tensor based approaches
      • 3) Matrix factorization based approaches
      • 4) Deep Learning based approaches
      • 5) Simulations registration and super-resolution approaches
    • 常见的数据集
    • 图像评价指标

本文参考 Hyperspectral-Image-Super-Resolution-Benchmark,并对相关论文pdf及代码链接进行更新。

0. pioneer工作及综述

  1. Unmixing based multisensor multiresolution image fusion, TGRS1999, B. Zhukov et al.

    • Paper: 1)IEEE Transactions on Geoscience and Remote Sensing
    • Cites: 462 DOI: 10.1109/36.763276
  2. Application of the stochastic mixing model to hyperspectral resolution enhancement, TGRS2004, M. T. Eismann et al.

    • Paper: 1) IEEE Transactions on Geoscience and Remote Sensing
    • Cites: 104 DOI: 10.1109/TGRS.2004.830644
  3. Resolution enhancement of hyperspectral imagery using maximum a posteriori estimation with a stochastic mixing model, Ph.D. dissertation, 2004, M. T. Eismann et al.

    • Paper: 1) IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data
  4. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor, TIP2004, R. C. Hardie et al.

    • Paper: 1) researchgate
    • DOI: 10.1109/tip.2004.829779
  5. Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions, TGRS2005, M. T. Eismann et al.

    • Paper: 1) researchgate 2)IEEE Transactions on Geoscience and Remote Sensing

    • Cites:128 DOI: 10.1109/tip.2004.829779

  6. Hyperspectral pansharpening: a review. GRSM2015, L. Loncan et al.

    • Paper: 1)IEEE Geoscience and Remote Sensing Magazine 2)arxiv.org/pdf/1504.04531.pdf
    • Cites: 553 10.1109/MGRS.2015.2440094
  7. Hyperspectral and multispectral data fusion: A comparative review of the recent literature, GRSM2017, N. Yokoya,et al.

    • Paper: 1)IEEE Geoscience and Remote Sensing Magazine 2)作者个人网站
    • Cites: 434 DOI: 10.1109/MGRS.2016.2637824
  8. A Survey of Hyperspectral Image Super-Resolution Technology, IGARSS2021, ML Zhang et al.

    • Paper: 1)2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
    • Cites: 9 DOI: 10.1109/IGARSS47720.2021.9554409
  9. Recent Advances and New Guidelines on Hyperspectral and Multispectral Image Fusion, Information Fusion2021, RW Dian, et al.

    • Paper: 1)Elsevier 2)arxiv.org/pdf/2008.03426.pdf

    • Cites : 105 DOI:https://DOI.org/10.1016/j.inffus.2020.11.001

基于深度学习的高光谱多光谱融合(updating)

  1. Deep Residual Convolutional Neural Network for Hyperspectral Image Super-Resolution, ICIG2017, C. Wang et al.

    • Paper :1) griffith.edu 2)springer
    • Code : ~
    • Cites : 17
  2. SSF-CNN: Spatial and Spectral Fusion with CNN for Hyperspectral Image Super-Resolution, ICIP2018, X. Han et al.

    • Paper: IEEE
    • Code : ~
    • Cites :47
  3. Deep Hyperspectral Image Sharpening, TNNLS2018, R. Dian et al.

    • Paper: IEEE
    • Code: https://github.com/renweidian/DHSIS
    • Cites: 254
  4. HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network, TGRS2018, Y. Chang et al.
    [Web]

    • Paper: IEEE
    • Code : ~
    • Cites: 180
  5. Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution, CVPR2018, Y. Qu et al.

    • Paper: 1)cvpr 2) arxiv
    • Code: https://github.com/aicip/uSDN
  6. Deep Hyperspectral Prior: Denoising, Inpainting, Super-Resolution, arXiv2019, Oleksii Sidorov et al.

    • Paper:1) semanticsholar 2) arxiv
    • Code: https://github.com/acecreamu/deep-hs-prior
    • Cites : 23
  7. Multi-level and Multi-scale Spatial and Spectral Fusion CNN for Hyperspectral Image Super-resolution, ICCVW 2019, Xianhua Han et al.

    • Paper: 1)ICCV 2)IEEE
    • Code : ~
    • Cites: 38
  8. Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net, CVPR2019, Xie Qi et al.

    • Paper: 1) cvpr 2) arxiv
    • Code: tf:https://github.com/XieQi2015/MHF-net
    • Cites: 146
  9. Hyperspectral Image Reconstruction Using Deep External and Internal Learning,ICCV2019, Zhang Tao et al.

    • Paper:1)ICCV 2) IEEE
    • Code : ~
    • Cites : 34
  10. Deep Blind Hyperspectral Image Fusion,ICCV2019,W. Wang, W. Zeng et al.

    • Paper: 1) ICCV 2)IEEE
    • Code :https://github.com/wwhappylife/Deep-Blind-Hyperspectral-Image-Fusion
    • Cites : 55
  11. Deep Blind Hyperspectral Image Super-Resolution, IEEE TNNLS 2020, Lei Zhang et al.

    • Paper: 1) IEEE
    • Code : https://github.com/JiangtaoNie/DBSR
    • Cites : 47
  12. Deep Recursive Network for Hyperspectral Image Super-Resolution, IEEE TCI2020, Wei Wei, et al.

    • Paper: 1) IEEE
    • Code: ~
    • Cites : 41
  13. Coupled Convolutional Neural Network With Adaptive Response Function Learning for Unsupervised Hyperspectral Super Resolution, IEEE TGRS 2020, K. Zheng et al.

    • Paper: 1) IEEE 2) arxiv
    • Code : ~
    • Cites : 90
  14. Unsupervised Adaptation Learning for Hyperspectral Imagery Super-Resolution, CVPR 2020, L. Zhang et al.

    • Paper: 1)cvpr 2)IEEE

    • Code: ~

    • Cites : 68

  15. Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution, ECCV 2020, J. Yao et al.

    • Paper: 1)springer 2) arxiv
    • Code : https://github.com/danfenghong/ECCV2020_CUCaNet
    • Cites : 106
  16. Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement, IEEE TGRS2021, Wei Wei, et al.

    • Paper: 1) IEEE 2)
    • Code : ~
    • Cites : 55
  17. A Band Divide-and-Conquer Multispectral and Hyperspectral Image Fusion Method, IEEE TGRS 2021, Weiwei Sun et al.

    • Paper: 1) IEEE
    • Code : ~
    • Cites : 27
  18. Hyperspectral Image Super-Resolution via Deep Progressive Zero-Centric Residual Learning, IEEE TIP 2021, Zhiyu Zhu et al.

    • Paper: 1) IEEE 2)arxiv
    • Code : ~
    • Cites : 27
  19. Hyperspectral Image Super-Resolution via Deep Prior Regularization with Parameter Estimation, IEEE TCSVT 2021, X. Wang et al.

    • Paper: 1) IEEE

    • Code: https://github.com/XiuhengWang/Sylvester_TSFN_MDC_HSI_superresolution

  20. Hyperspectral Image Super-Resolution with Self-Supervised Spectral-Spatial Residual Network, RS 2021, W. Chen et al.

    • Paper : 1) MDPI
  21. Hyperspectral Image Super-Resolution via Deep Spatiospectral Attention Convolutional Neural Networks, IEEE TNNLS 2021, J. Hu et al.

    • Paper: 1)IEEE
    • Code : tf:https://github.com/liangjiandeng/HSRnet
    • Cites : 48
    • 个人网站:https://liangjiandeng.github.io/index.html
  22. Model-Guided Deep Hyperspectral Image Super-Resolution, IEEE TIP 2021, W. Dong et al.

    • Paper: 1) IEEE 2)arxiv
    • Code : ~
    • Cites : 27
  23. Learning A 3D-CNN and Transformer Prior for hyperspectral Image Super-Resolution, arXiv 2021, Q. Ma et al, arXiv 2021, Q. Ma et al.

    • Paper: 1) Elsevier 2)arxiv
    • Code : ~
    • Cites : 2
  24. Hyperspectral Image Super-resolution with Deep Priors and Degradation Model Inversion, ICASSP 2022, X. Wang et al.

    • Paper: 1) arxiv
    • Code: https://github.com/xiuheng-wang/Deep_gradient_HSI_superresolution
    • Cites : 11
  25. Model Inspired AutoenCoder for Unsupervised Hyperspectral Image Super-Resolution, TGRS 2022, J Liu et al.

    • Paper: 1)IEEE 2) arxiv
    • Code: https://github.com/liuofficial/MIAE
    • Cites : 29
  26. Fusformer: A Transformer-Based Fusion Network for Hyperspectral Image Super-Resolution, GRSL 2022, J Hu, et al.

    • Paper: 1) IEEE 2)arxiv
    • Code : https://github.com/J-FHu/Fusformer
    • Cites : 28
  27. External-Internal Attention for Hyperspectral Image Super-Resolution, TGRS 2022, Z Guo, et al.

    • Paper : 1) IEEE
    • Code : ~
    • Cites : 3
  28. Symmetrical Feature Propagation Network for Hyperspectral Image Super-Resolution, TGRS 2022, Q Li, et al

    • Paper: 1) IEEE 2)arxiv
    • Code : https://github.com/qianngli/SFPN
    • Cites : 11
  29. Context-Aware Guided Attention Based Cross-Feedback Dense Network for Hyperspectral Image Super-Resolution, TGRS 2022, W Dong, et al.

    • Paper: 1) IEEE
    • Code : ~
    • Cites : 6


1. 空间光谱图像超分 (to be updated)

​ "空间光谱图像"是指同时包含空间和光谱信息的图像,融合了高光谱(hyperspectral)和多光谱(multispectral)图像的特性。通常,传统的多光谱图像可能只涵盖少量波段(通常是3-10个波段),而高光谱图像涵盖的波段则更多(可能有数十到数百个波段)。空间光谱图像则结合了更高数量级的波段和空间信息,使得图像在光谱和空间上都具有更高的分辨率和丰富度。

low-resolution multispectral image, e.g., LR RGB image

  • Spatial and spectral joint super-resolution using convolutional neural network, TGRS 2020, S. Mei et al.
  • Our work】Multi-task Interaction learning for Spatiospectral Image Super-Resolution, Q. Ma et al. submitted to IEEE TIP, in peer review.
  • Our work】Deep Unfolding Network for Spatiospectral Image Super-Resolution, Q. Ma et al. IEEE TCI 2022. [Code]
  • Ponet: A universal physical optimization-based spectral super-resolution network for arbitrary multispectral images. Information Fusion 2022. J He et al.

2. 高分辨率多光谱图像超分(to be updated)

针对高分辨率多光谱图像,例如,高分辨率 RGB 图像或其他二维测量

  • NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images, CVPRW 2018, Boaz Arad et al.

  • NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image, CVPRW 2020, Boaz Arad et al.

  • NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results, CVPRW2022, L Wang et al.

  • MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction, CVPRW 2022, Y. Cai et al. (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)[PDF] [Code]

  • HDNet: High-resolution Dual-domain Learning for Spectral Compressive Imaging, CVPR 2022, Y. Cai et al. [PDF] [Code]

  • Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction, CVPR 2022, Y. Cai et al. [PDF] [Code]

  • HASIC-Net: Hybrid Attentional Convolutional Neural Network With Structure Information Consistency for Spectral Super-Resolution of RGB Images, TGRS 2022, J LI et al.

  • Semisupervised spectral degradation constrained network for spectral super-resolution, GRSL 2022, W Chen, et al.

  • A spectral–spatial jointed spectral super-resolution and its application to hj-1a satellite images, GRSL 2022, X Han, et al.

  • DRCR Net: Dense Residual Channel Re-calibration Network with Non-local Purification for Spectral Super Resolution, CVPRW 2022, JJ LI, et al.

  • DsTer: A dense spectral transformer for remote sensing spectral super-resolution, International Journal of Applied Earth Observation and Geoinformation 2022, J He, et al.


3. 单张高光谱图像超分(to be updated)

单个高光谱图像超分辨率

  • Super-resolution reconstruction of hyperspectral images, TIP2005, T. Akgun et al.

  • Enhanced self-training superresolution mapping technique for hyperspectral imagery, GRSL2011, F. A. Mianji et al.

  • A super-resolution reconstruction algorithm for hyperspectral images. Signal Process. 2012, H. Zhang et al.

  • Super-resolution hyperspectral imaging with unknown blurring by low-rank and group-sparse modeling, ICIP2014, H. Huang et al.

  • Super-resolution mapping via multi-dictionary based sparse representation, ICASSP2016, H. Huang et al.

  • Super-resolution: An efficient method to improve spatial resolution of hyperspectral images, IGARSS2016, A. Villa, J. Chanussot et al.

  • Hyperspectral image super resolution reconstruction with a joint spectral-spatial sub-pixel mapping model, IGARSS2016, X. Xu et al.

  • Hyperspectral image super-resolution by spectral mixture analysis and spatial–spectral group sparsity, GRSL2016, J. Li et al.

  • Super-resolution reconstruction of hyperspectral images via low rank tensor modeling and total variation regularization, IGARSS2016, S. He et al.
    [PDF]

  • Hyperspectral image super-resolution by spectral difference learning and spatial error correction, GRSL2017, J. Hu et al.

  • Super-Resolution for Remote Sensing Images via Local–Global Combined Network, GRSL2017, J. Hu et al.

  • Hyperspectral image superresolution by transfer learning, Jstars2017, Y. Yuan et al. [PDF]

  • Hyperspectral image super-resolution using deep convolutional neural network, Neurocomputing, 2017, Sen Lei et al. [PDF]

  • Hyperspectral image super-resolution via nonlocal low-rank tensor approximation and total variation regularization, Remote Sensing, 2017, Yao Wang et al. [PDF]

  • Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network, Remote Sensing, 2017, Saohui Mei et al. [PDF]
    [Code]

  • A MAP-Based Approach for Hyperspectral Imagery Super-Resolution, TIP2018, Hasan Irmak et al.

  • Single Hyperspectral Image Super-resolution with Grouped Deep Recursive Residual Network, BigMM2018, Yong Li et al. [PDF]
    [Code]

  • Hyperspectral image super-resolution with spectral–spatial network, IJRS2018, Jinrang Jia et al. [PDF]

  • Separable-spectral convolution and inception network for hyperspectral image super-resolution, IJMLC 2019, Ke Zheng et al.

  • Hyperspectral Image Super-Resolution Using Deep Feature Matrix Factorization, IEEE TGRS 2019, Weiying Xie et al. [PDF]

  • Deep Hyperspectral Prior Single-Image Denoising, Inpainting, Super-Resolution, ICCVW2019, Oleksii Sidorov et al. [PDF]

  • Spatial-Spectral Residual Network for Hyperspectral Image Super-Resolution, arXiv2020, Qi Wang et al. [PDF]

  • CNN-Based Super-Resolution of Hyperspectral Images, IEEE TGRS 2020, P. V. Arun et al. [PDF]

  • Hyperspectral Image Super-Resolution via Intrafusion Network, IEEE TGRS 2020, Jing Hu et al. [PDF]

  • Mixed 2D/3D Convolutional Network for Hyperspectral Image Super-Resolution, Remote Sensing 2020, Qiang Li et al. [Code][Pdf]

  • Hyperspectral Image Super-Resolution by Band Attention Through Adversarial Learning, IEEE TGRS 2020, Jiaojiao Li et al. [Pdf]

  • Our work】Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery, IEEE TCI 2020, Junjun Jiang et al. [Code][Pdf] It achieves state-of-the-art performance for Single Hyperspectral Image Super-Resolution (SHSR) task

  • Bidirectional 3D Quasi-Recurrent Neural Networkfor Hyperspectral Image Super-Resolution, IEEE JStars 2021, Ying Fu et al. [Web] [Pdf]

  • Hyperspectral Image Super-Resolution Using Spectrum and Feature Context, IEEE TIM 2021, Qi Wang et al. [Web] [Pdf]

  • Hyperspectral Image Super-Resolution with Spectral Mixup and Heterogeneous Datasets, arXiv2021, Ke Li et al. [Pdf]

  • A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution, IEEE TGRS 2021, Denghong Liu et al. [Web][Pdf]

  • Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral Imagery, arXiv 2021, Enhai Liu et al. [Web][Pdf]

  • Exploring the Relationship Between 2D/3D Convolution for Hyperspectral Image Super-Resolution, IEEE TGRS 2021, Qi Wang et al. [Web][Pdf]

  • Hyperspectral Image Super-Resolution via Recurrent Feedback Embedding and Spatial-Spectral Consistency Regularization, IEEE RGS 2021, Xinya Wang et al. [Pdf]

  • Hyperspectral Image Super-Resolution Using Spectrum and Feature Context, IEEE TIM 2021, Qi Wang et al. [Web][Pdf]

  • Dilated projection correction network based on autoenCoder for hyperspectral image super-resolution, Neural Networks 2022, X. Wang et al.

  • Hyperspectral Image Super-Resolution with RGB Image Super-Resolution as an Auxiliary Task, WACV 2022, K Li et al. [PDF] [Code]

  • Our work】From Less to More: Spectral Splitting and Aggregation Network for Hyperspectral Face Super-Resolution, CVPRW 2022, JJ Jiang, et al. [PDF]

  • Interactformer: Interactive Transformer and CNN for Hyperspectral Image Super-Resolution, TGRS 2022, Y Liu. [PDF]

  • Multiple Frame Splicing and Degradation Learning for Hyperspectral Imagery Super-Resolution, IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2022, C Deng, et al. [PDF]

  • A Group-based Embedding Learning and Integration Network for Hyperspectral Image Super-resolution, TGRS 2022, X Wang, et al. [PDF]

  • Hyperspectral image super-resolution using cluster-based deep convolutional networks, Signal Processing: Image Communication 2022, C Zou, et al. [PDF]

  • Learning Deep Resonant Prior for Hyperspectral Image Super-Resolution, TGRS 2022, Z Gong, et al. [PDF]

  • GJTD-LR: A Trainable Grouped Joint Tensor Dictionary With Low-Rank Prior for Single Hyperspectral Image Super-Resolution, TGRS 2022, C Liu, rt al. [PDF]


4. 高光谱多光谱融合超分(to be updated)

1) Bayesian based approaches

  • Blind Image Fusion for Hyperspectral Imaging with the Directional Total Variation, Inverse Problems, 2018, Leon Bungert et al.
    [PDF]
    [Code]

  • Bayesian sparse representation for hyperspectral image super resolution, CVPR2015, N. Akhtar et al.
    [PDF]
    [Code]

  • Hysure: A convex formulation for hyperspectral image superresolution via subspace-based regularization, TGRS2015, M. Simoes et al.
    [PDF]
    [Code]

  • Hyperspectral and multispectral image fusion based on a sparse representation, TGRS2015, Q. Wei et al.
    [PDF]
    [Code]

  • Bayesian fusion of multi-band images, Jstar2015, W. Qi et al.
    [PDF]
    [Code]

  • Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images, TGRS2009, Y. Zhang et al.
    [PDF]

  • Weighted Low-rank Tensor Recovery for Hyperspectral Image Restoration, arXiv2018, Yi Chang et al.
    [PDF]

  • Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV Minimization, ICIP 2021, Marija Vella et al. [PDF][Code]

2) Tensor based approaches

  • Hyperspectral image superresolution via non-local sparse tensor factorization, CVPR2017, R. Dian et al.
    [PDF]

  • Spatial–Spectral-Graph-Regularized Low-Rank Tensor Decomposition for Multispectral and Hyperspectral Image Fusion, Jstars2018, K. Zhang et al.
    [PDF]

  • Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization, TIP2108, S. Li et al.
    [PDF]
    [Code]

  • Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach, arXiv2018, Charilaos I. Kanatsoulis et al.
    [PDF]

  • Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution, TIP2019, Yang Xu et al.
    [PDF]
    [Web]

  • Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution, TNNLS2019, Renwei Dian et al.
    [PDF]
    [Web]

  • Nonnegative and Nonlocal Sparse Tensor Factorization-Based Hyperspectral Image Super-Resolution, IEEE TGRS2020, Wei Wan et al.
    [PDF]

  • Nonlocal Coupled Tensor CP Decomposition for Hyperspectral and Multispectral Image Fusion, IEEE TGRS2020, Xu Yang et al.
    [PDF]

  • Hyperspectral Super-Resolution via Coupled Tensor Ring Factorization, IEEE TGRS2020, Wei He et al.
    [PDF]

  • Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution, IEEE TIP2021, Jize Xue et al.,
    [PDF]

  • Hyperspectral Images Super-Resolution via Learning High-Order Coupled Tensor Ring Representation, IEEE TNNLS 2020, Y. Xu et al. [Pdf]

  • Hyperspectral Image Superresolution Using Global Gradient Sparse and Nonlocal Low-Rank Tensor Decomposition With Hyper-Laplacian Prior, IEEE JStars 2021, Y. Peng et al. [Pdf]

  • Hyperspectral Image Superresolution via Structure-Tensor-Based Image Matting, IEEE JStars 2021, H. Gao et al. [Pdf]

  • Hyperspectral super-resolution via coupled tensor ring factorization, PR 2022, W He, et al. [PDF] [Code]

  • Coupled Tensor Block Term Decomposition with Superpixel-Based Graph Laplacian Regularization for Hyperspectral Super-Resolution, RS 2022, H Liu, et al. [PDF]

3) Matrix factorization based approaches

  • High-resolution hyperspectral imaging via matrix factorization, CVPR2011, R. Kawakami et al.
    [PDF] [Code]

  • Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, TGRS2012, N. Yokoya et al.
    [PDF]
    [Code]

  • Sparse spatio-spectral representation for hyperspectral image super-resolution, ECCV2014, N. Akhtar et al.
    [PDF]
    [Code]

  • Hyper-sharpening: A first approach on SIM-GA data, Jstars2015, M. Selva et al.

  • Hyperspectral super-resolution by coupled spectral unmixing, ICCV2015, C Lanaras.
    [PDF]
    [Code]

  • RGB-guided hyperspectral image upsampling, CVPR2015, H. Kwon et al.
    [PDF]
    [Code]

  • Multiband image fusion based on spectral unmixing, TGRS2016, Q. Wei et al.
    [PDF]
    [Code]

  • Hyperspectral image super-resolution via non-negative structured sparse representation, TIP2016, W. Dong, et al.
    [PDF] [Code]

  • Hyperspectral super-resolution of locally low rank images from complementary multisource data, TIP2016, M. A. Veganzones et al.
    [PDF]

  • Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank factorization, TGRS2017, K. Zhang et al.

  • Hyperspectral Image Super-Resolution Based on Spatial and Spectral Correlation Fusion, TRGS2018, C. Yi et al.

  • Self-Similarity Constrained Sparse Representation for Hyperspectral Image Super-Resolution, TIP2108, X. Han et al.

  • Exploiting Clustering Manifold Structure for Hyperspectral Imagery Super-Resolution, TIP2018, L. Zhang et al.
    [Code]

  • Hyperspectral Image Super-Resolution With a Mosaic RGB Image, TIP2018, Y. Fu et al.
    [PDF]

  • Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization, TIP2018, S. Li et al.
    [PDF][Code]

  • Multispectral Image Super-Resolution via RGB Image Fusion and Radiometric Calibration, TIP2019, Zhi-Wei Pan et al.
    [PDF]
    [Web]

  • Hyperspectral Image Super-resolution via Subspace-Based Low Tensor Multi-Rank Regularization, TIP2019, Renwei Dian et al. [PDF]

  • Hyperspectral Image Super-Resolution With Optimized RGB Guidance, Ying Fu et al., CVPR2019. [PDF]

  • Super-Resolution for Hyperspectral and Multispectral Image Fusion Accounting for Seasonal Spectral Variability, TIP2020, R.A. Borsoi et al. [PDF]

  • A Truncated Matrix Decomposition for Hyperspectral Image Super-Resolution, TIP2020, Jianjun Liu et al. [PDF]

  • Adaptive Nonnegative Sparse Representation for Hyperspectral Image Super-Resolution, IEEE JStars 2021, X. Li et al. [Pdf]

4) Deep Learning based approaches

  • Deep Residual Convolutional Neural Network for Hyperspectral Image Super-Resolution, ICIG2017, C. Wang et al.
    [PDF]

  • SSF-CNN: Spatial and Spectral Fusion with CNN for Hyperspectral Image Super-Resolution, ICIP2018, X. Han et al. [PDF]

  • Deep Hyperspectral Image Sharpening, TNNLS2018, R. Dian et al.
    [PDF] [Code]

  • HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network, TGRS2018, Y. Chang et al.
    [Web]

  • Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution, CVPR2018, Y. Qu et al.
    [PDF] [Code]

  • Deep Hyperspectral Prior: Denoising, Inpainting, Super-Resolution, arXiv2019, Oleksii Sidorov et al.
    [PDF]
    [Code]

  • Multi-level and Multi-scale Spatial and Spectral Fusion CNN for Hyperspectral Image Super-resolution, ICCVW 2019, Xianhua Han et al.
    [PDF]

  • Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net, CVPR2019, Xie Qi et al.
    [PDF] [Web]

  • Hyperspectral Image Reconstruction Using Deep External and Internal Learning,ICCV2019, Zhang Tao et al.
    [PDF]
    [Web]

  • Deep Blind Hyperspectral Image Super-Resolution, IEEE TNNLS 2020, Lei Zhang et al. [Pdf]

  • Deep Recursive Network for Hyperspectral Image Super-Resolution, IEEE TCI2020, Wei Wei, et al. [PDF] [Web]

  • Coupled Convolutional Neural Network With Adaptive Response Function Learning for Unsupervised Hyperspectral Super Resolution, IEEE TGRS 2020, K. Zheng et al. [Pdf]

  • Unsupervised Adaptation Learning for Hyperspectral Imagery Super-Resolution, CVPR 2020, L. Zhang et al. [Pdf]

  • Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution, ECCV 2020, J. Yao et al. [Pdf]

  • Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement, IEEE TGRS2021, Wei Wei, et al. [PDF] [Web]

  • A Band Divide-and-Conquer Multispectral and Hyperspectral Image Fusion Method, IEEE TGRS 2021, Weiwei Sun et al. [Pdf]

  • Hyperspectral Image Super-Resolution via Deep Progressive Zero-Centric Residual Learning, IEEE TIP 2021, Zhiyu Zhu et al. [Pdf]

  • Hyperspectral Image Super-Resolution via Deep Prior Regularization with Parameter Estimation, IEEE TCSVT 2021, X. Wang et al. [Pdf][Code]

  • Hyperspectral Image Super-Resolution with Self-Supervised Spectral-Spatial Residual Network, RS 2021, W. Chen et al. [Pdf]

  • Hyperspectral Image Super-Resolution via Deep Spatiospectral Attention Convolutional Neural Networks, IEEE TNNLS 2021, J. Hu et al. [Pdf]

  • Model-Guided Deep Hyperspectral Image Super-Resolution, IEEE TIP 2021, W. Dong et al. [Pdf] [Web]

  • Our work】Learning A 3D-CNN and Transformer Prior for hyperspectral Image Super-Resolution, arXiv 2021, Q. Ma et al. [Pdf] It achieves state-of-the-art performance for Multispectral and Hyperspectral Image Fusion (MHF) task

  • Hyperspectral Image Super-resolution with Deep Priors and Degradation Model Inversion, ICASSP 2022, X. Wang et al. [Pdf] [ Code]

  • Model Inspired AutoenCoder for Unsupervised Hyperspectral Image Super-Resolution, TGRS 2022, J Liu et al. [Pdf] [Code]

  • Fusformer: A Transformer-Based Fusion Network for Hyperspectral Image Super-Resolution, GRSL 2022, J Hu, et al. [Pdf] [Code]

  • External-Internal Attention for Hyperspectral Image Super-Resolution, TGRS 2022, Z Guo, et al.

  • Model inspired autoenCoder for unsupervised hyperspectral image super-resolution, TGRS 2022, J Liu, et al.

  • Symmetrical Feature Propagation Network for Hyperspectral Image Super-Resolution, TGRS 2022, Q Li, et al.

  • Context-Aware Guided Attention Based Cross-Feedback Dense Network for Hyperspectral Image Super-Resolution, TGRS 2022, W Dong, et al.

5) Simulations registration and super-resolution approaches

  • An Integrated Approach to Registration and Fusion of Hyperspectral and Multispectral Images, TRGS 2019, Yuan Zhou et al.

  • Deep Blind Hyperspectral Image Fusion, ICCV2019, Wu Wang et al. [PDF]

  • Unsupervised and Unregistered Hyperspectral Image Super-Resolution With Mutual Dirichlet-Net, IEEE TGRS 2021, Y. Qu et al. [Pdf]


常见的数据集

  • CAVE dataset
  • Harvard dataset
  • iCVL dataset
  • NUS datase
  • NTIRE18 dataset
  • Chikusei dataset
  • Indian Pines, Salinas, KSC et al.

图像评价指标

  • Peak Signal to Noise Ratio (PSNR)
  • Root Mean Square Error (RMSE)
  • Structural SIMilarity index (SSIM)
  • Spectral Angle Mapper (SAM)
  • Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)
  • Universal Image Quality Index (UIQI)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/164116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重生之我是一名程序员 39 ——C语言题目之青蛙跳台阶

哈喽啊大家晚上好!今天给大家带来的是C语言经典题目之青蛙跳台阶。青蛙跳台阶是一个数学问题,也是一个经典的递归问题。假设一只青蛙要跳上一个n级台阶,它可以每次跳1级台阶或2级台阶。问:青蛙跳上这个n级台阶总共有多少种不同的跳…

AMESim|学习记录

此文记录AMESim学习过程中的各种情况。 目录 01 王佳. AUV 浮力调节系统设计及控制策略研究[D]. 天津大学, 2017.01 王佳. AUV 浮力调节系统设计及控制策略研究[D]. 天津大学, 2017. 01 王佳. AUV 浮力调节系统设计及控制策略研究[D]. 天津大学, 2017. 开始步入正文 01 王佳.…

【Leetcode合集】14. 最长公共前缀

14. 最长公共前缀 14. 最长公共前缀 代码仓库地址: https://github.com/slience-me/Leetcode 个人博客 :https://slienceme.xyz 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 ""。 示例 …

【UE】用样条线实现测距功能(下)

目录 效果 步骤 一、实现多次测距功能 二、通过控件蓝图来进行测距 在上一篇(【UE】用样条线实现测距功能(上))文章基础上继续实现多次测距和清除功能。 效果 步骤 一、实现多次测距功能 打开蓝图“BP_Spline”&#xff0c…

cherry pick的使用

https://blog.csdn.net/weixin_55229531/article/details/128726872

SPS简单对应分析

前言: 本专栏参考教材为《SPSS22.0从入门到精通》,由于软件版本原因,部分内容有所改变,为适应软件版本的变化,特此创作此专栏便于大家学习。本专栏使用软件为:SPSS25.0 本专栏所有的数据文件请点击此链接下…

Git如何修改提交(commit)用户名称(user.name)和邮箱(user.email)

Git用户名 Git查看用户名 git config user.name修改Git提交用户名 修改全局Git用户名 git config --global user.name "xx" 修改当前服务/项目Git用户名 git config user.name "xx"如果出现以下错误,解决方案如下: 错误案例&am…

量子计算概述

目录 1.量子计算介绍 2.量子计算应用 3.量子计算研究机构 1.量子计算介绍 量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。经典计算使用2进制进行运算,但2进制只有0和1两种状态,而量子计算除了包含0和1两种状…

C百题--6.输出C

1.问题描述 输出“C”样式的字符 2.解决思路 1.用printf(&#xff09;逐行输出&#xff1b; 2用循环一部分一部分输出 3.代码实现 #include<stdio.h> int main(){for(int i0;i<5;i){printf("*"); }printf("\n");for(int i0;i<2;i){printf…

OpenStack云计算平台-镜像服务

目录 一、镜像服务概览 二、安装和配置 1、先决条件 2、安全并配置组件 3、完成安装 三、验证操作 一、镜像服务概览 OpenStack镜像服务是IaaS的核心服务&#xff0c;如同 :ref:get_started_conceptual_architecture所示。它接受磁盘镜像或服务器镜像API请求&#xff0c;…

Redis Stream消息队列

什么是Stream? Stream 实际上是一个具有消息发布/订阅功能的组件&#xff0c;也就常说的消息队列。其实这种类似于 broker/consumer(生产者/消费者)的数据结构很常见&#xff0c;比如 RabbitMQ 消息中间件、Celery 消息中间件&#xff0c;以及 Kafka 分布式消息系统等&#x…

字符串匹配算法——KMP

有文本串aabaabaaf&#xff0c;模式串aabaaf问文本串中是否出现过模式串 暴力解法 最不用动脑子的&#xff0c;直接两层for循环&#xff0c;逐个匹配&#xff0c;匹配到不相等的值时把文本串后移一位&#xff0c;再重新比较。这种方法的复杂度是O(mn)&#xff0c;该方法低效的…

关键字const的修饰(指针)

A.const修饰变量 变量是可以修改的&#xff0c;如果把变量的地址交给⼀个指针变量&#xff0c;通过指针变量的也可以修改这个变量。 但是如果我们希望⼀个变量加上⼀些限制&#xff0c;不能被修改&#xff0c;怎么做呢&#xff1f;这就是const的作⽤。 #include <stdio.h&…

postpresql 查询某张表的字段名和字段类型

postpresql 查询某张表的字段名和字段类型 工作中第一次接触postpresql&#xff0c;接触到这么个需求&#xff0c;只是对sql有点了解&#xff0c;于是就网上查阅资料。得知通过系统表可以查询&#xff0c;设计到几张系统表&#xff1a;pg_class、pg_attrubute、information_sc…

axios二次封装配置请求拦截器和响应拦截器

我们为什么要对axios进行二次封装&#xff1f; 因为我们可以使用请求拦截器在发送请求之前处理一些业务&#xff0c;使用响应拦截器在服务器数据返回后处理一些业务。 我们通常创建一个api文件夹&#xff0c;再创建一个request.js文件&#xff0c;用于存放重写后的axios。 /…

SiP系统级封装、SOC芯片和合封芯片主要区别!合封和sip一样吗?

SiP系统级封装、SOC芯片和合封芯片技术是三种备受关注的技术。它们在提高系统性能、稳定性和功耗效率方面都发挥着重要作用 但在集成方式、应用领域和技术特点等方面存在一些区别。本文将从多个角度对这三种技术进行深入解读。 一、集成方式 合封芯片则是一种将多个芯片或不…

Vue弹窗的使用与传值

使用element-UI中的Dialog 对话框 vue组件结合实现~~~~ 定义html <div click"MyAnalyze()">我的区划</div><el-dialog title"" :visible.sync"dialogBiomeVisible"><NationalBiome :closeValue"TypeBiome" cl…

轻松入门Axios:前端开发中的HTTP利器

轻松入门Axios&#xff1a;前端开发中的HTTP利器 前言为什么选择Axios1. **简单易用:**2. **功能丰富:**3. **广泛支持的浏览器和环境:**4. **跨域支持:**5. **社区活跃:**6. **对于处理错误的友好性:**7. **对于并发请求的支持:** 安装与引用1. 使用 npm 安装 Axios&#xff1…

基于51单片机车载空调系统设计proteus仿真+源程序)

一、系统方案 1、本设计采用这51单片机作为主控器。 2、DS18B20采集温度值送到液晶1602显示。 3、按键设置报警值。 4、温度控制风扇档位。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 /T0初始化*/ void init_t0() { //TMOD0x01;//定时器…