【多模态】20、OVR-CNN | 使用 caption 来实现开放词汇目标检测

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 学习 视觉-语义 空间
      • 2.2 学习开放词汇目标检测
    • 三、效果

论文:Open-Vocabulary Object Detection Using Captions

代码:https://github.com/alirezazareian/ovr-cnn

出处:CVPR2021 Oral

一、背景

目标检测数据标注很耗费人力,现有的开集大型数据,如 Open Images 和 MSCOCO 数据集大约包含 600 个数据类别

如果想要识别现实世界中的任何物体,则需要更多的人工数据标注

但人类学习显示视觉世界中的物体很大程度上是基于语言的监督信号,也可以使用几个简单的例子来泛化到其他目标上,而不需要所有的目标实例。

所以在本文中,作者模仿人类的能力,设计了一个双阶段开集目标检测 Open-Vocabulary object Detection(OVD)

  • 首次提出了使用 image-caption pairs 来获得无限的词汇,类似于人类从自然语言中学习一样,然后使用部分标注实例来学习目标检测
  • 这样就能够仅仅使用有限类别的标注样本就可以了,其他的就从 caption 中来学习
  • 这些样本对儿获得起来更加方便,而且网络上就有很多现成的

图 2 展示了几种非常相近的任务的差别:

  • Open-vocabulary:通过语言词汇来将目标类和基础类进行关联
  • Zero-Shot:主要目标是实现从见过的类上扩展到没见过的类上
  • Weaky Supervised:
    在这里插入图片描述

二、方法

大体框架结构如图 1 所示:

  • 要训练能检测任何目标( target vocabulary: V T V_T VT)的模型需要下面的几种信息
  • 大量的 image-caption 数据集(包含大量的多样的单词): V C V_C VC
  • 较少数据量的检测数据集(有基础类别框标注信息): V B V_B VB

在这里插入图片描述

图 3 展示了详细的结构:

  • 本文方法基于 Faster R-CNN,在基础类别上进行训练,在目标类别上进行测试

  • 预训练:为了避免在基础类别上过拟合,作者在大量词汇量 V C V_C VC 下进行了预训练(上半部分),让模型能够学习到更全面的语义信息,而不是只有基础类别的语义信息。即在 image-caption pairs 上通过 grounding、masked language modeling (MLM) 、 image-text matching 来训练 ResNet 和 V2L layer,V2L layer 是 vision2language 模块,负责将视觉特征变换到文本空间,好让两个不同模态的特征能在同一空间来衡量相似性。

  • 训练:预训练后使用得到的 ResNet 和 V2L layer 来初始化 Faster R-CNN ,以此来实现开放词汇目标检测,ResNet 50 用于 backbone,V2L layer 是会用于对每个 proposal 特征进行变换的,变换之后会与类别标签的文本特征计算相似度来进行分类的,训练的时候会固定 V2L layer 的,使其学习到的广泛的信息能够泛化到新类

  • 整个模型框架和 Faster RCNN 一样,只是将最后的 cls head 替换成了 V2L,也就是换成了一个将 visual feature 投影到 text embedding space 的投影矩阵

在这里插入图片描述

2.1 学习 视觉-语义 空间

本文提出了一个 Vision to Language(V2L)映射层,和 CNN 一起在预训练中进行学习,使用 grounding 任务和和一些辅助自监督任务来训练 CNN 和 V2L layer。

  • 输入:image-caption pairs

  • 特征提取:image 输入 visual backbone(ResNet50),caption 输入 language backbone(BERT),分别提取对应的特征

  • 特征融合:将两种特征输入多模态特征融合器中,来抽取多模态的 embedding

  • 目标:让每个 caption 的 word embedding 和其对应的图像区域更加接近,且作者设定了一个 global grounding score 来度量其关系,成对儿的 image-caption 得分要最大,不成对儿的 image-caption 得分要小

    在这里插入图片描述

  • 负样本对儿:作者使用同一个 batch 中的其他图像作为每个 caption 的negative examples,也使用同一 batch 中的其他 caption 作为每个 image 的 negative examples

  • grounding objective functions 如下:

    在这里插入图片描述

  • 最终的 loss:

    在这里插入图片描述

2.2 学习开放词汇目标检测

在完成 ResNet 和 V2L 的预训练后,作者要把其学习到的东西迁移到 object detection 上,方式就是用训练后的特征来初始化 Faster R-CNN

  • 首先,使用经过预训练的 ResNet50 的 stem 和前 3 个 block 来抽取图像特征
  • 然后,使用 region proposal network 来预测目标可能出现的位置和 objectness score,并且使用 NMS 和 RoI pooling 来得到每个目标框
  • 之后,给每个 proposal 使用 ResNet50 的第 4 个 block (和一个 pooling)来提取每个 proposal 的最终特征
  • 最终,对比每个 proposal 被编码到 word space 中的特征和基础类别 k 的得分
    在这里插入图片描述

三、效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16197.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis系列一:介绍

介绍 The open source, in-memory data store used by millions of developers as a database, cache, streaming engine, and message broker. 相关资源 Redis 官网:https://redis.io/ 源码地址:https://github.com/redis/redis Redis 在线测试&#…

学习使用axios,绑定动态数据

目录 axios特性 案例一:通过axios获取笑话 案例二:调用城市天气api接口数据实现天气查询案例 axios特性 支持 Promise API 拦截请求和响应(可以在请求前及响应前做某些操作,例如,在请求前想要在这个请求头中加一些…

springboot 整合tx-mybaits 实现crud操作

一 操作案例 1.1 工程结构 1.2 pom文件的配置 <!--spring boot的依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId…

【机器学习】Multiple Variable Linear Regression

Multiple Variable Linear Regression 1、问题描述1.1 包含样例的X矩阵1.2 参数向量 w, b 2、多变量的模型预测2.1 逐元素进行预测2.2 向量点积进行预测 3、多变量线性回归模型计算损失4、多变量线性回归模型梯度下降4.1 计算梯度4.2梯度下降 首先&#xff0c;导入所需的库 im…

Reinforcement Learning with Code 【Code 1. Tabular Q-learning】

Reinforcement Learning with Code 【Code 1. Tabular Q-learning】 This note records how the author begin to learn RL. Both theoretical understanding and code practice are presented. Many material are referenced such as ZhaoShiyu’s Mathematical Foundation o…

Windows 10 中无法最大化任务栏中的程序

方法1&#xff1a;仅选择选项 PC 屏幕 如果您使用双显示器&#xff0c;有时这可能会发生在您的 1 台计算机已插入但您正在访问的应用程序正在另一台计算机上运行的情况下&#xff0c;因此您看不到任何选项。因此&#xff0c;请设置仅在主计算机上显示显示的 PC 屏幕选项。 第…

搭建自己第一个golang程序

概念&#xff1a; golang 和 java有些类似&#xff0c;配置好环境就可以直接编写运行了&#xff1b;这里分两种&#xff1a; 一.shell模式 创建一个go类型的文件 往里面编写代码 二.开发工具模式 这里的开发工具 我选用goland package mainimport "fmt"func mai…

Ubuntu 20.04.4 LTS安装Terminator终端(Linux系统推荐)

Terminator终端可以在一个窗口中创建多个终端&#xff0c;并且可以水平、垂直分割&#xff0c;运行ROS时很方便。 sudo apt install terminator这样安装完成后&#xff0c;使用快捷键Ctrl Alt T打开的就是新安装的terminator终端&#xff0c;可以使用以下方法仍然打开ubuntu默…

【数据结构】实验四:循环链表

实验四 循环链表 一、实验目的与要求 1&#xff09;熟悉循环链表的类型定义和基本操作&#xff1b; 2&#xff09;灵活应用循环链表解决具体应用问题。 二、实验内容 题目一&#xff1a;有n个小孩围成一圈&#xff0c;给他们从1开始依次编号&#xff0c;从编号为1的小孩开…

Prometheus中的关键设计

1、标准先行&#xff0c;注重生态 Prometheus 最重要的规范就是指标命名方式&#xff0c;数据格式简单易读。比如&#xff0c;对于应用层面的监控&#xff0c;可以要求必须具备这几个信息。 指标名称 metric Prometheus 内置建立的规范就是叫 metric&#xff08;即 __name__…

ICMP协议(网际报文控制协议)详解

ICMP协议&#xff08;网际报文控制协议&#xff09;详解 ICMP协议的功能ICMP的报文格式常见的ICMP报文差错报文目的站不可达数据报超时 查询报文回送请求或回答 ICMP协议是一个网络层协议。 一个新搭建好的网络&#xff0c;往往需要先进行一个简单的测试&#xff0c;来验证网络…

小白到运维工程师自学之路 第六十集 (docker的概述与安装)

一、概述 1、客户&#xff08;老板&#xff09;-产品-开发-测试-运维项目周期不断延后&#xff0c;项目质量差。 随着云计算和DevOps生态圈的蓬勃发展&#xff0c;产生了大量优秀的系统和软件。软件开发人员可以自由选择各种软件应用环境。但同时带来的问题就是需要维护一个非…

spring-authorization-server (1.1.1)自定义认证

前言 注意&#xff1a;我本地没有生成公钥和私钥&#xff0c;所以每次启动项目jwkSource都会重新生成&#xff0c;导致之前认证的token都会失效&#xff0c;具体如何生成私钥和公钥以及怎么配置到授权服务器中&#xff0c;网上有很多方法自行实现即可 之前有个项目用的0.0.3的…

Vue(待续)

概念 一套用于构建用户界面的渐进式JavaScript框架 Vue可以自底向上逐层的应用&#xff1a; 简单应用:只需一个轻量小巧的核心库。 复杂应用:可以引入各式各样的Vue插件。 1.采用组件化模式&#xff0c;提高代码复用率、且让代码更好维护。 2.声明式编码&#xff0c;让编码人员…

【设计模式——学习笔记】23种设计模式——装饰器模式Decorator(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 生活案例咖啡厅 咖啡定制案例 装饰者模式介绍介绍出场角色 案例实现案例一&#xff08;咖啡厅问题&#xff09;类图代码实现咖啡样式拓展代码实现 案例二类图代码实现 装饰着模式在IO流源码的应用总结什么是父类和子类的一致性如何让自己和被委托对象有一致性 文章说明…

深度学习和神经网络

人工神经网络分为两个阶段&#xff1a; 1 &#xff1a;接收来自其他n个神经元传递过来的信号&#xff0c;这些输入信号通过与相应的权重进行 加权求和传递给下个阶段。&#xff08;预激活阶段&#xff09; 2&#xff1a;把预激活的加权结果传递给激活函数 sum :加权 f:激活…

【Linux】UDP协议

​&#x1f320; 作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《学会Linux》 &#x1f387; 座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录 &#x1f449;传输层&a…

Mysql的锁

加锁的目的 对数据加锁是为了解决事务的隔离性问题&#xff0c;让事务之前相互不影响&#xff0c;每个事务进行操作的时候都必须先加上一把锁&#xff0c;防止其他事务同时操作数据。 事务的属性 &#xff08;ACID&#xff09; 原子性 一致性 隔离性 持久性 事务的隔离级别 锁…

Python入门【__init__ 构造方法和 __new__ 方法、类对象、类属性、类方法、静态方法、内存分析实例对象和类对象创建过程(重要)】(十四)

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱敲代码的小王&#xff0c;CSDN博客博主,Python小白 &#x1f4d5;系列专栏&#xff1a;python入门到实战、Python爬虫开发、Python办公自动化、Python数据分析、Python前后端开发 &#x1f4e7;如果文章知识点有错误…

[C++] 类与对象(上)

目录 1、前言 2、类的引入 3、类的定义 3.1 类的两种定义方式 4、类的访问限定符 5、类的作用域 6、类的实例化 7、类对象模型 7.1 内存对齐规则 7.1 类对象的存储方式 8、this指针 8.1 this指针的特性 8.2 this指针是否可以为空 1、前言 C语言是面向过程的&#…