ConditionObject介绍(二)

1. Condition的signal方法分析

分为了几个部分:
● 确保执行signal方法的是持有锁的线程
● 脱离Condition的队列
● 将Node状态从-2改为0
● 将Node添加到AQS队列
● 为了避免当前Node无法在AQS队列正常唤醒做了一些判断和操作

// 线程挂起后,可以基于signal唤醒~
public final void signal() {// 在ReentrantLock中,如果执行signal的线程没有持有锁资源,直接扔异常
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
// 拿到排在Condition首位的Node
Node first = firstWaiter;
// 有Node在排队,才需要唤醒,如果没有,直接告辞~~
if (first != null)
doSignal(first);
}
// 开始唤醒Condition中的Node中的线程
private void doSignal(Node first) {
// 先一波do-while走你~~~
do {
// 获取到第二个节点,并且将第二个节点设置为firstWaiter
if ( (firstWaiter = first.nextWaiter) == null)
// 说明就一个节点在Condition队列中,那么直接将firstWaiter和lastWaiter置位null
lastWaiter = null;
// 如果还有nextWaiter节点,因为当前节点要被唤醒了,脱离整个Condition队列。将nextWaiter置位null
first.nextWaiter = null;
// 如果transferForSignal返回true,一切正常,退出while循环
} while (!transferForSignal(first) &&
// 如果后续节点还有,往后面继续唤醒,如果没有,退出while循环
(first = firstWaiter) != null);
}
// 准备开始唤醒在Condition中排队的Node
final boolean transferForSignal(Node node) {
// 将在Condition队列中的Node的状态从-2,改为0,代表要扔到AQS队列了。
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
// 如果失败了,说明在signal之前应当是线程被中断了,从而被唤醒了。
return false;
// 如果正常的将Node的状态从-2改为0,这是就要将Condition中的这个Node扔到AQS的队列。
// 将当前Node扔到AQS队列,返回的p是当前Node的prev
Node p = enq(node);
// 获取上一个Node的状态
int ws = p.waitStatus;
// 如果ws > 0 ,说明这个Node已经被取消了。
// 如果ws状态不是取消,将prev节点的状态改为-1,。
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
// 如果prev节点已经取消了,可能会导致当前节点永远无法被唤醒。立即唤醒当前节点,基于acquireQueued方法,
// 让当前节点找到一个正常的prev节点,并挂起线程
// 如果prev节点正常,但是CAS修改prev节点失败了。证明prev节点因为并发原因导致状态改变。还是为了避免当前
// 节点无法被正常唤醒,提前唤醒当前线程,基于acquireQueued方法,让当前节点找到一个正常的prev节点,并挂起线程
LockSupport.unpark(node.thread);
// 返回true
return true;
}

2. Conditiond的await方法分析(后置分析)

分为了几个部分:
● 唤醒之后,要先确认是中断唤醒还是signal唤醒,还是signal唤醒后被中断
● 确保当前线程的Node已经在AQS队列中
● 执行acquireQueued方法,等待锁资源。
● 在获取锁资源后,要确认是否在获取锁资源的阶段被中断过,如果被中断过,并且不是THROW_IE,那就确保
interruptMode是REINTERRUPT。
● 确认当前Node已经不在Condition队列中了
● 最终根据interruptMode来决定具体做的事情
● 0:嘛也不做。
● THROW_IE:抛出异常
● REINTERRUPT:执行线程的interrupt方法

// 现在分析await方法的后半部分
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
// 中断模式~
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
// 如果线程执行到这,说明现在被唤醒了。
// 线程可以被signal唤醒。(如果是signal唤醒,可以确认线程已经在AQS队列中)
// 线程可以被interrupt唤醒,线程被唤醒后,没有在AQS队列中。
// 如果线程先被signal唤醒,然后线程中断了。。。。(做一些额外处理)
// checkInterruptWhileWaiting可以确认当前中如何唤醒的。
// 返回的值,有三种
// 0:正常signal唤醒,没别的事(不知道Node是否在AQS队列)// THROW_IE(-1):中断唤醒,并且可以确保在AQS队列
// REINTERRUPT(1):signal唤醒,但是线程被中断了,并且可以确保在AQS队列
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// Node一定在AQS队列
// 执行acquireQueued,尝试在ReentrantLock中获取锁资源。
// acquireQueued方法返回true:代表线程在AQS队列中挂起时,被中断过
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
// 如果线程在AQS队列排队时,被中断了,并且不是THROW_IE状态,确保线程的interruptMode是REINTERRUPT
// REINTERRUPT:await不是中断唤醒,但是后续被中断过!!!
interruptMode = REINTERRUPT;
// 如果当前Node还在condition的单向链表中,脱离Condition的单向链表
if (node.nextWaiter != null)
unlinkCancelledWaiters();
// 如果interruptMode是0,说明线程在signal后以及持有锁的过程中,没被中断过,什么事都不做!
if (interruptMode != 0)
// 如果不是0~
reportInterruptAfterWait(interruptMode);
}
// 判断当前线程被唤醒的模式,确认interruptMode的值。
private int checkInterruptWhileWaiting(Node node) {
// 判断线程是否中断了。
return Thread.interrupted() ?
// THROW_IE:代表线程是被interrupt唤醒的,需要向上排除异常
// REINTERRUPT:代表线程是signal唤醒的,但是在唤醒之后,被中断了。(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
// 线程是正常的被signal唤醒,并且线程没有中断过。
0;
}
// 判断线程到底是中断唤醒的,还是signal唤醒的!
final boolean transferAfterCancelledWait(Node node) {
// 基于CAS将Node的状态从-2改为0
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
// 说明是中断唤醒的线程。因为CAS成功了。
// 将Node添加到AQS队列中~(如果是中断唤醒的,当前线程同时存在Condition的单向链表以及AQS的队列中)
enq(node);
// 返回true
return true;
}
// 判断当前的Node是否在AQS队列(signal唤醒的,但是可能线程还没放到AQS队列)
// 等到signal方法将线程的Node扔到AQS队列后,再做后续操作
while (!isOnSyncQueue(node))
// 如果没在AQS队列上,那就线程让步,稍等一会,Node放到AQS队列再处理(看CPU)
Thread.yield();
// signal唤醒的,返回false
return false;
}
// 确认Node是否在AQS队列上
final boolean isOnSyncQueue(Node node) {
// 如果线程状态为-2,肯定没在AQS队列// 如果prev节点的值为null,肯定没在AQS队列
if (node.waitStatus == Node.CONDITION || node.prev == null)
// 返回false
return false;
// 如果节点的next不为null。说明已经在AQS队列上。、
if (node.next != null)
// 确定AQS队列上有!
return true;
// 如果上述判断都没有确认节点在AQS队列上,在AQS队列中寻找一波
return findNodeFromTail(node);
}
// 在AQS队列中找当前节点
private boolean findNodeFromTail(Node node) {
// 拿到尾节点
Node t = tail;
for (;;) {
// tail是否是当前节点,如果是,说明在AQS队列
if (t == node)
// 可以跳出while循环
return true;
// 如果节点为null,AQS队列中没有当前节点
if (t == null)
// 进入while,让步一手
return false;
// t向前引用
t = t.prev;
}
}
private void reportInterruptAfterWait(int interruptMode) throws InterruptedException {
// 如果是中断唤醒的await,直接抛出异常!
if (interruptMode == THROW_IE)
throw new InterruptedException();
// 如果是REINTERRUPT,signal后被中断过
else if (interruptMode == REINTERRUPT)
// 确认线程的中断标记位是true
// Thread.currentThread().interrupt();
selfInterrupt();
}

3 Condition的awaitNanos&signalAll方法分析

awaitNanos:仅仅是在await方法的基础上,做了一内内的改变,整体的逻辑思想都是一样的。
挂起线程时,传入要阻塞的时间,时间到了,自动唤醒,走添加到AQS队列的逻辑

// await指定时间,多了个时间到了自动醒。
public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
// deadline:当前线程最多挂起到什么时间点final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
// nanosTimeout的时间小于等于0,直接告辞!!
if (nanosTimeout <= 0L) {
// 正常扔到AQS队列
transferAfterCancelledWait(node);
break;
}
// nanosTimeout的时间大于1000纳秒时,才可以挂起线程
if (nanosTimeout >= spinForTimeoutThreshold)
// 如果大于,正常挂起
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
// 计算剩余的挂起时间,可能需要重新的走while循环,再次挂起线程
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
// 剩余的挂起时间
return deadline - System.nanoTime();
}

signalAll方法。这个方法一看就懂,之前signal是唤醒1个,这个是全部唤醒

// 以do-while的形式,将Condition单向链表中的所有Node,全部唤醒并扔到AQS队列
private void doSignalAll(Node first) {
// 将头尾都置位null~
lastWaiter = firstWaiter = null;
do {
// 拿到next节点的引用
Node next = first.nextWaiter;
// 断开当前Node的nextWaiter
first.nextWaiter = null;
// 修改Node状态,扔AQS队列,是否唤醒!
transferForSignal(first);
// 指向下一个节点
first = next;
} while (first != null);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161825.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Centos设置nginx开机自启动设置

Centos设置nginx开机自启动设置 要设置CentOS中的Nginx开机自启动&#xff0c;可以按照以下步骤进行操作&#xff1a; 首先&#xff0c;登录到CentOS服务器上&#xff0c;并以root用户或具有sudo权限的用户身份执行以下命令来安装Nginx&#xff08;如果尚未安装&#xff09;&a…

字符集合!!!

字符集合&#xff01;&#xff01;&#xff01; 描述 输入一个字符串&#xff0c;求出该字符串包含的字符集合&#xff0c;按照字母输入的顺序输出。 数据范围&#xff1a;输入的字符串长度满足 1 \le n \le 100 \1≤n≤100 &#xff0c;且只包含大小写字母&#xff0c;区分大小…

中国信息通信研究院产业与规划研究所校招一面、二面内容

本文介绍2024届秋招中&#xff0c;中国信息通信研究院的数字孪生智慧城市研究员岗位一面、二面的面试基本情况、提问问题等。 10月投递了中国信息通信研究院的数字孪生智慧城市研究员岗位&#xff0c;所在部门为数字孪生与城市数字化研究部。目前完成了一面与二面&#xff0c;在…

Django 模型和Admin站点管理(三)

一、定义模型 &#xff08;1&#xff09; 创建模型类&#xff0c;必须要继承自 models.Model from django.db import models# Create your models here. #设计数据库 #创建模型 class UserModel(models.Model):namemodels.CharField(max_length30) #对应于SQL name varchar(30…

K8s实战RestartPoliy策略

一、默认策略为Always cmd.yaml apiVersion: v1 kind: Pod metadata:name: myapp-pod labels:app: myapp spec: containers:- name: myapp-container image: busyboxcommand: [sh, -c, echo OK!&& sleep 60]首先我们根据这个yaml创建一个测试的pod 执行命令 kubec…

Vue.observable可以在vue2中给新增的属性增加响应式

将data中的config数据转为响应式&#xff1a; data() {return {config: {password1: "YQd^7D1",password2: "YQd^7D2",password3: "YQd^7D3"}}; }, computed: {transformedConfig() {if (this.config) {return Object.keys(this.config).map(k…

C++二维数组中的查找

4. 二维数组中的查找 题目链接 牛客网 题目描述 给定一个二维数组,其每一行从左到右递增排序,从上到下也是递增排序。给定一个数,判断这个数是否在该二维数组中。 Consider the following matrix: [[1, 4, 7, 11, 15],[2, 5, 8, 12, 19],[3, 6, 9, 16, 22],[1…

深度之眼Paper带读笔记GNN.08.GCN(下)

文章目录 前言细节四&#xff1a;卷积核介绍图卷积核初代目图卷积核二代目契比雪夫多项式例子小结 GCN公式推导 实验设置和结果分析数据集节点分类任务消息传递方式比较运行效率 总结关键点创新点启发点 代码复现train.pyutil.pymodel.pylayer.py 作业 前言 本课程来自深度之眼…

基于单片机直流电机调速(proteus仿真+源程序)

一、系统方案 1、本设计采用这51单片机作为主控器。 2、转速值送到液晶1602显示。 3、按键设加减速&#xff0c;开始暂停、正反转。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 en0; rw0; write_com(0x01); //lcd初始化 write_com(0x38)…

CQ 社区版 V2.6.0 发布 | SQL闪回、权限看板、新增数据源人大金仓等

前言 HELLO&#xff0c;大家好&#xff0c;又到了 CloudQuery 社区版发版时间&#xff01;本次更新版本为 v2.6.0&#xff0c;亮点多多&#xff0c;我们直入主题一起来看&#xff01; 一、本期亮点 新增 3 种数据源支持 V2.6.0&#xff0c;新增三种国产数据源支持&#xff…

cocos2dx ​​Animate3D (一)

3D相关的动画都是继承Grid3DAction 本质上是用GirdBase进行创建动画的小块。 Shaky3D 晃动特效 // 持续时间(时间过后不会回到原来的样子) // 整个屏幕被分成几行几列 // 晃动的范围 // z轴是否晃动 static Shaky3D* create(float initWithDuration, const Size& …

内存可见性与指令重排序

文章目录 内存可见性内存可见性问题代码演示JMM&#xff08;Java Memory Model&#xff09; 指令重排序指令重排序问题代码演示指令重排序分析 volatile关键字volatile 保证内存可见性 & 禁止指令重排序volatile 不保证原子性 在上一节介绍线程安全问题的过程中&#xff0c…

2023亚太杯数学建模B题思路 - 玻璃温室中的微气候法规

# 1 赛题 问题B 玻璃温室中的微气候法规 温室作物的产量受到各种气候因素的影响&#xff0c;包括温度、湿度和风速[1]。其中&#xff0c;适 宜的温度和风速是植物生长[2]的关键。为了调节玻璃温室内的温度、风速等气候因素 , 温室的设计通常采用带有温室风扇的通风系统&#x…

实验4.数据全量、增量、比较更新

【实验目的】 1.利用Kettle的“表输入”&#xff0c;“表输入出”&#xff0c;”JavaScript代码”组件&#xff0c;实现数据全量更新。 2.熟练掌握“JavaScript代码”&#xff0c;“表输入”&#xff0c;“表输入出”组件的使用&#xff0c;实现数据全量更新。 【实验原理】 …

MATLAB算法实战应用案例精讲-【图像处理】图像缩放

目录 前言 知识储备 MATLAB图像处理函数 数字数字图像增强 数字数字图像的变换

二级指针

*代表指针变量。int*为p的类型。故pp第一个*表示pp为指针int** pp&#xff0c;指向p的二级指针。 p中储存a的地址&#xff0c;pp中储存p的地址。 打印&#xff0c;printf中**pp的表示&#xff1a;pp中储存的是p的地址&#xff0c;第一个*解引用地址p表示p的内容&#xff0c;p的…

Pickcode:教孩子们编码的新视觉语言

Pickcode 通过视觉课程、聊天机器人、游戏和绘图来教授编程。 Pickcode 是一种新的语言和编辑器&#xff0c;可以直观地指导用户编写代码来制作聊天机器人、动画图画和游戏。Pickcode 旨在让用户在学习更高级的语言之前能够充满信心地开始学习编码。 Pickcode 可视化编程语言…

回归算法优化过程推导

假设存在一个数据集&#xff0c;包含工资、年龄及贷款额度三个维度的数据。我们需要根据这个数据集进行建模&#xff0c;从而在给定工资和年龄的情况下&#xff0c;实现对贷款额度的预测。其中&#xff0c;工资和年龄是模型构建时的两个特征&#xff0c;额度是模型输出的目标值…

被DDOS了怎么办 要如何应对

DDoS攻击的特点和类型 1. 特点 DDoS攻击的特点是通过大量合法的请求或者无效的请求&#xff0c;消耗目标服务器的网络带宽和系统资源&#xff0c;使其无法正常运行。攻击者通常使用多个主机发起攻击&#xff0c;以达到更高的攻击效果。 2. 常见类型 &#xff08;1&#xff09;S…

SPASS-ARIMA模型

基本概念 在预测中,对于平稳的时间序列,可用自回归移动平均(AutoRegres- sive Moving Average, ARMA)模型及特殊情况的自回归(AutoRegressive, AR)模型、移动平均(Moving Average, MA)模型等来拟合,预测该时间序列的未来值,但在实际的经济预测中,随机数据序列往往…