回归算法优化过程推导

假设存在一个数据集,包含工资、年龄及贷款额度三个维度的数据。我们需要根据这个数据集进行建模,从而在给定工资和年龄的情况下,实现对贷款额度的预测。其中,工资和年龄是模型构建时的两个特征,额度是模型输出的目标值。

工资年龄额度
40002520000
80003070000
50002835000
75003350000
120004085000

我们可以根据数据集和相关需求进行公式建模:
y = θ 0 + θ 1 x 1 + θ 2 x 2 + ε = θ T x + ε y = {\theta }_{0} + {\theta }_{1}x_1 + {\theta }_{2}x_2 + \varepsilon = {\theta }^{T}x + \varepsilon y=θ0+θ1x1+θ2x2+ε=θTx+ε
其中, θ 0 \theta _0 θ0 为偏置项, θ 1 \theta _1 θ1 θ 2 \theta _2 θ2 为两个特征 x 1 x_1 x1 x 2 x_2 x2 的权重项, ε \varepsilon ε 为误差项; θ T \theta ^T θT 为一个行向量, x x x 为包含特征 x 1 x_1 x1 x 2 x_2 x2 的矩阵。

θ 1 x 1 + θ 2 x 2 {\theta }_{1}x_1 + {\theta }_{2}x_2 θ1x1+θ2x2 在三维空间中表示的平面会尽可能去拟合所有数据点(目标值),但是这个平面并不一定是拟合度最高的,也许该平面沿着 y y y 维度向上或向下平移一点距离所得到的新平面才是拟合度最高的,因此我们会在该拟合表达式中加上一个偏置项 θ 0 \theta _0 θ0

θ 0 + θ 1 x 1 + θ 2 x 2 {\theta }_{0} + {\theta }_{1}x_1 + {\theta }_{2}x_2 θ0+θ1x1+θ2x2 是给定 x 1 x_1 x1 x 2 x_2 x2 值时,对目标值的预测,预测值与真实值之间必然会存在一个误差,因此我们在该表达式中还需加上一个误差项 ε \varepsilon ε

在这里插入图片描述

对于一个样本而言,公式可以写成如下形式:
y ( i ) = θ T x ( i ) + ε ( i ) ⇒ ε ( i ) = y ( i ) − θ T x ( i ) y^{(i)} = {\theta }^{T}x^{(i)} + \varepsilon ^{(i)} \Rightarrow \varepsilon ^{(i)} = y^{(i)} - {\theta }^{T}x^{(i)} y(i)=θTx(i)+ε(i)ε(i)=y(i)θTx(i)
其中,每个样本的误差 ε ( i ) \varepsilon ^{(i)} ε(i) 都是独立同分布的,服从均值为 0 0 0 的高斯分布。

高斯分布的概率密度函数如下所示:
f ( x ) = 1 2 π σ ⋅ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi }\sigma }·{e}^{-\frac{{(x-\mu )}^{2}}{2{\sigma }^{2}}} f(x)=2π σ1e2σ2(xμ)2
把误差带入进去,可得到公式:
f ( ε ( i ) ) = 1 2 π σ ⋅ e − ( ε ( i ) ) 2 2 σ 2 = 1 2 π σ ⋅ e − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 f({\varepsilon }^{(i)}) = \frac{1}{\sqrt{2\pi }\sigma }·{e}^{-\frac{{({\varepsilon }^{(i)})}^{2}}{2{\sigma }^{2}}} = \frac{1}{\sqrt{2\pi }\sigma }·{e}^{-\frac{{(y^{(i)} - {\theta }^{T}x^{(i)})}^{2}}{2{\sigma }^{2}}} f(ε(i))=2π σ1e2σ2(ε(i))2=2π σ1e2σ2(y(i)θTx(i))2
该公式表示误差趋于 0 0 0 的概率,或者说预测值 θ T x ( i ) {\theta }^{T}x^{(i)} θTx(i) 趋近于真实值的概率,这个概率自然是越大越好。

在这里插入图片描述

我们的最终目的是要求出最合适的 θ 0 \theta _0 θ0 θ 1 \theta _1 θ1 θ 2 \theta _2 θ2,而似然函数是统计学中用于估计参数的一个函数。因此在给出观测数据的前提下,我们可以利用似然函数来推断出未知的参数值。

构建的似然函数如下所示:
L ( θ ) = ∏ i = 1 m 1 2 π σ ⋅ e − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 L(\theta ) = \displaystyle\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi }\sigma }·{e}^{-\frac{{(y^{(i)} - {\theta }^{T}x^{(i)})}^{2}}{2{\sigma }^{2}}} L(θ)=i=1m2π σ1e2σ2(y(i)θTx(i))2
其中,在各个样本都符合独立同分布的情况下,联合概率密度就等于各样本概率密度的乘积,因此这里用了累乘。

想在乘法中求解出参数 θ \theta θ,也许是一个比较难的事,但如果能把乘法转换成加法,对于参数的求解可能就容易了许多。鉴于此,我们可以使用对数似然函数来进行参数的求解。

构建的对数似然函数如下所示:
l o g L ( θ ) = l o g ∏ i = 1 m 1 2 π σ ⋅ e − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 logL(\theta ) = log\displaystyle\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi }\sigma }·{e}^{-\frac{{(y^{(i)} - {\theta }^{T}x^{(i)})}^{2}}{2{\sigma }^{2}}} logL(θ)=logi=1m2π σ1e2σ2(y(i)θTx(i))2
将上述公式进行展开化简:
l o g L ( θ ) = ∑ i = 1 m l o g 1 2 π σ ⋅ e − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 = m l o g 1 2 π σ + ∑ i = 1 m l o g e − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 = m l o g 1 2 π σ − 1 σ 2 ⋅ 1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 logL(\theta ) = \displaystyle\sum_{i=1}^{m}log\frac{1}{\sqrt{2\pi }\sigma }·{e}^{-\frac{{(y^{(i)} - {\theta }^{T}x^{(i)})}^{2}}{2{\sigma }^{2}}} \\= mlog\frac{1}{\sqrt{2\pi }\sigma } + \displaystyle\sum_{i=1}^{m}log{e}^{-\frac{{(y^{(i)} - {\theta }^{T}x^{(i)})}^{2}}{2{\sigma }^{2}}} \\= mlog\frac{1}{\sqrt{2\pi }\sigma } - \frac{1}{{\sigma }^{2}}·\frac{1}{2}\displaystyle\sum_{i=1}^{m}{(y^{(i)} - {\theta }^{T}x^{(i)})}^{2} logL(θ)=i=1mlog2π σ1e2σ2(y(i)θTx(i))2=mlog2π σ1+i=1mloge2σ2(y(i)θTx(i))2=mlog2π σ1σ2121i=1m(y(i)θTx(i))2
我们要让似然函数越大越好,因此上述公式等价于让下述目标函数的目标值越小越好:
J ( θ ) = 1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 J(\theta ) = \frac{1}{2}\displaystyle\sum_{i=1}^{m}{(y^{(i)} - {\theta }^{T}x^{(i)})}^{2} J(θ)=21i=1m(y(i)θTx(i))2
我们首先对上述目标函数进行展开:
J ( θ ) = 1 2 ( X θ − y ) T ( X θ − y ) = 1 2 ( θ T X T − y T ) ( X θ − y ) = 1 2 ( θ T X T X θ − θ T X T y − y T X θ + y T y ) = 1 2 ( 2 X T X θ − X T y − ( y T X ) T ) = X T X θ − X T y J(\theta ) = \frac{1}{2}{(X\theta - y)}^{T}(X\theta - y) \\ = \frac{1}{2}{(\theta ^TX^T - y^T)}(X\theta - y) \\ = \frac{1}{2}(\theta ^TX^TX\theta - \theta ^TX^Ty - y^TX\theta + y^Ty) \\ = \frac{1}{2}(2X^TX\theta - X^Ty - (y^TX)^T) \\ = X^TX\theta - X^Ty J(θ)=21(y)T(y)=21(θTXTyT)(y)=21(θTXTθTXTyyT+yTy)=21(2XTXTy(yTX)T)=XTXTy
根据展开的公式推出参数值:
θ = ( X T X ) − 1 X T y \theta = (X^TX)^{-1}X^Ty θ=(XTX)1XTy
通过这种方法可以进行参数值 θ \theta θ 的求解,但是在上式中, X T X X^TX XTX 不一定是可逆的,也就是说不一定能求解出参数值 θ \theta θ

鉴于上述问题,我们需要考虑使用其他方法来求解合适的 θ \theta θ,而机器学习就是非常好的方法。一个常规的思路是,我们喂给机器一堆数据,然后告诉它该用什么样的方式学习,并让它朝着这个方向去做(目标/损失函数),每一次学习一点,经过多次迭代优化后,最终收敛至一个稳定的状态。

在对目标函数进行求解时,通常会用到梯度下降法来进行优化。梯度下降是一种常用的优化算法,用于求解目标函数的最小值或最大值。它的基本思想是通过迭代的方式,沿着目标函数的负梯度方向逐步更新参数,以逐渐接近最优解。具体来说,对于一个可微的目标函数,我们希望找到使其取得最小值的参数。梯度下降通过以下步骤进行迭代更新:

  1. 初始化参数:选择初始参数值作为起点
  2. 计算梯度:计算目标函数关于参数的梯度(导数)
  3. 更新参数:将当前参数值沿着负梯度方向移动一小步,更新参数值
  4. 重复步骤 2 和步骤 3,直到满足停止条件(如达到最大迭代次数或梯度变化很小)

梯度方向指示了函数上升最快的方向,而负梯度方向则指示了函数下降最快的方向。因此,通过不断更新参数,梯度下降算法可以朝着函数取得最小值的方向逐渐迭代,最终接近或达到最优解。

梯度下降算法有多种变体,如批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)和小批量梯度下降(Mini-Batch Gradient Descent),它们在每次更新参数时所使用的样本数量不同。这些变体具有不同的优缺点,适用于不同的问题和数据集规模。

回到上面的问题,此时的目标/损失函数如下所示:
J ( θ ) = 1 2 m ∑ i = 1 m ( y i − θ T x i ) 2 J(\theta ) = \frac{1}{2m}\displaystyle\sum_{i=1}^{m}(y^i - \theta ^Tx^i)^2 J(θ)=2m1i=1m(yiθTxi)2
当使用批量梯度下降时,目标函数关于第 j j j 个参数的梯度可以写成如下形式:
δ J ( θ ) δ θ j = − 1 m ∑ i = 1 m ( y i − θ T x i ) x j i \frac{\delta J(\theta)}{\delta \theta _j} = -\frac{1}{m}\displaystyle\sum_{i=1}^{m}(y^i - \theta ^Tx^i){x}_{j}^{i} δθjδJ(θ)=m1i=1m(yiθTxi)xji
更新参数后,新的参数可以表示成如下形式:
θ j ′ = θ j + α ⋅ 1 m ∑ i = 1 m ( y i − θ T x i ) x j i {\theta }_{j}^{'} = \theta _j + \alpha · \frac{1}{m}\displaystyle\sum_{i=1}^{m}(y^i - \theta ^Tx^i){x}_{j}^{i} θj=θj+αm1i=1m(yiθTxi)xji
当使用随机梯度下降时,目标函数关于第 j j j 个参数的梯度可以写成如下形式:
δ J ( θ ) δ θ j = − ( y i − θ T x i ) x j i \frac{\delta J(\theta)}{\delta \theta _j} = -(y^i - \theta ^Tx^i){x}_{j}^{i} δθjδJ(θ)=(yiθTxi)xji
更新参数后,新的参数可以表示成如下形式:
θ j ′ = θ j + α ⋅ ( y i − θ T x i ) x j i {\theta }_{j}^{'} = \theta _j + \alpha · (y^i - \theta ^Tx^i){x}_{j}^{i} θj=θj+α(yiθTxi)xji
当使用小批量梯度下降时,目标函数关于第 j j j 个参数的梯度可以写成如下形式:
δ J ( θ ) δ θ j = 1 10 ∑ k = i i + 9 ( θ T x k − y k ) x j k \frac{\delta J(\theta)}{\delta \theta _j} = \frac{1}{10}\displaystyle\sum_{k=i}^{i+9}(\theta ^Tx^k - y^k){x}_{j}^{k} δθjδJ(θ)=101k=ii+9(θTxkyk)xjk
更新参数后,新的参数可以表示成如下形式:
θ j ′ = θ j − α ⋅ 1 10 ∑ k = i i + 9 ( θ T x k − y k ) x j k {\theta }_{j}^{'} = \theta _j - \alpha · \frac{1}{10}\displaystyle\sum_{k=i}^{i+9}(\theta ^Tx^k - y^k){x}_{j}^{k} θj=θjα101k=ii+9(θTxkyk)xjk
批量梯度下降容易得到最优解,但是由于每次都要考虑所有样本,因此速度很慢;随机梯度下降每次找一个样本,迭代速度快,但不一定每次都朝着收敛的方向前进(存在离群点、噪声点等干扰);小批量梯度下降比较实用,用的也比较多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SPASS-ARIMA模型

基本概念 在预测中,对于平稳的时间序列,可用自回归移动平均(AutoRegres- sive Moving Average, ARMA)模型及特殊情况的自回归(AutoRegressive, AR)模型、移动平均(Moving Average, MA)模型等来拟合,预测该时间序列的未来值,但在实际的经济预测中,随机数据序列往往…

macos端文件夹快速访问工具 Default Folder X 最新for mac

Default Folder X 是一款实用的工具,提供了许多增强功能和快捷方式,使用户能够更高效地浏览和管理文件。它的快速导航、增强的文件对话框、自定义设置和快捷键等功能,可以大大提升用户的工作效率和文件管理体验。 快速导航和访问:…

2023亚太杯数学建模B题思路分析 - 玻璃温室中的微气候法规

1 赛题 问题B 玻璃温室中的微气候法规 温室作物的产量受到各种气候因素的影响,包括温度、湿度和风速[1]。其中,适 宜的温度和风速是植物生长[2]的关键。为了调节玻璃温室内的温度、风速等气候因素 , 温室的设计通常采用带有温室风扇的通风系统&#xf…

《数学之美》第三版的读书笔记一、主要是马尔可夫假设、隐马尔可夫模型、图论深度/广度、PageRank相关算法、TF-IDF词频算法

1、马尔可夫假设 从19世纪到20世纪初,俄国有个数学家叫马尔可夫他提出了一种方法,假设任意一个词出现的概率只同它前面的词有关。这种假设在数学上称为马尔可夫假设。 2、二元组的相对频度 利用条件概率的公式,某个句子出现的概率等于每一个词出现的条件概率相乘,于是可展…

【计算机网络笔记】路由算法之层次路由

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…

STM32_5(中断)

中断系统 中断:在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当前正在运行的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继续运行中断优先级:当…

如何用java的虚拟线程连接数据库

我觉得这个很简单 首先确保你idea支持jdk21. 然后把idea编译成的目标字节码设置为21版本的 然后编写代码。 创建虚拟线程的方式有: Runnable runnable () -> {System.out.println("Hello, world!"); };// 创建虚拟线程 Thread virtualThread Thre…

从0开始学习JavaScript--JavaScript迭代器

JavaScript迭代器(Iterator)是一种强大的编程工具,它提供了一种统一的方式来遍历不同数据结构中的元素。本文将深入探讨JavaScript迭代器的基本概念、用法,并通过丰富的示例代码展示其在实际应用中的灵活性和强大功能。 迭代器的…

【计算思维】蓝桥杯STEMA 科技素养考试真题及解析 2

1、兰兰有一些数字卡片,从 1 到 100 的数字都有,她拿出几张数字卡片按照一定顺序摆放。想一想,第 5 张卡片应该是 A、11 B、12 C、13 D、14 答案:C 2、按照下图的规律,阴影部分应该填 A、 B、 C、 D、 答案&am…

2023亚太杯数学建模竞赛(亚太赛)选题建议+初步分析

如下为C君的2023亚太杯数学建模竞赛&#xff08;亚太赛&#xff09;选题建议初步分析&#xff1a; 提示&#xff1a;DS C君认为的难度&#xff1a;C<A<B&#xff0c;开放度&#xff1a;A<B<C。 以下为ABC题选题建议及初步分析&#xff1a; A题&#xff1a;Image…

Vue批量全局处理undefined和null转为““ 空字符串

我们在处理后台返回的信息&#xff0c;有的时候返回的是undefined或者null&#xff0c;这种字符串容易引起用户的误解&#xff0c;所以需要我们把这些字符串处理一下。 如果每个页面都单独处理&#xff0c;那么页面会很冗余&#xff0c;并且后期如果有修改容易遗漏&#xff0c…

二十二、数组(4)

本章概要 随机生成泛型和基本数组 随机生成 我们可以按照 Count.java 的结构创建一个生成随机值的工具&#xff1a; Rand.java import java.util.*; import java.util.function.*;import static com.example.test.ConvertTo.primitive;public interface Rand {int MOD 10_0…

5-1 Java 网络编程

第1关&#xff1a;URL类与InetAddress类 任务描述 本关任务&#xff1a;了解网络编程基础知识。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;1.URL&#xff1b;2.InetAddress。 URL 统一资源定位符&#xff08;Uniform Resource Locator&#xff0c;缩…

2023.11.22 homework

七年级数学 五年级数学 也不知道可以教到几年级&#xff0c;估计很快就教不动了。人生啊。

读像火箭科学家一样思考笔记06_初学者之心

1. 专业化是目前流行的趋势 1.1. 通才&#xff08;generalist&#xff09;是指博而不精之人 1.2. 懂得的手艺越多&#xff0c;反而会家徒四壁 1.2.1. 希腊谚语 1.3. 这种态度代价很大&#xff0c;它阻断了不同学科思想的交融 2. 组合游戏 2.1. 某个行业的变革可能始于另一…

Pycharm的程序调试

有如下代码需要进行调试&#xff1a; i 1 while i < 10:print(i)步骤一&#xff1a;设置断点 步骤二&#xff1a;进入调试视图 方式1&#xff1a;右键单击编辑区&#xff1a;点击’Debug模块名’ ​ 方式2&#xff1a;ShiftF9 ​ 方式3&#xff1a;单机工具栏上的调试按钮…

Django报错:RuntimeError at /home/ 解决办法

错误提示&#xff1a; RuntimeError at /home/ Model class django.contrib.contenttypes.models.ContentType doesnt declare an explicit app_label and isnt in an application in INSTALLED_APPS. 原因剖析&#xff1a; 博主在使用pycharm创建Django项目的时候&#xff0…

vector的简单模拟实现_C++

目录 一、vector的数据结构 二、vector的构造 三、vector的增删查改及空间管理 四、全部代码 一、vector的数据结构 vector以线性连续空间为基础来定义数据结构以及扩展功能。vector的两个迭代器&#xff0c;分别是start和finish&#xff0c;分别指向配置得来的已被使用的空…

网络渗透测试(wireshark 抓取QQ图片)

1.打开wireshark 这里我用的wifi连接 所以点开wifi就好 打开wifi之后就开始在本机上进行抓包了 我们先给我们的QQ发送一张图片&#xff0c;用自己的手机发送给电脑 然后点击左上角的正方形&#xff0c;停止捕获抓包 QQ的关键词是oicq&#xff0c;所以我们直接找 打开oicq …

【论文阅读笔记】Emu Edit: Precise Image Editing via Recognition and Generation Tasks

【论文阅读笔记】Emu Edit: Precise Image Editing via Recognition and Generation Tasks 论文阅读笔记论文信息摘要背景方法结果额外 关键发现作者动机相关工作1. 使用输入和编辑图像的对齐和详细描述来执行特定的编辑2. 另一类图像编辑模型采用输入掩码作为附加输入 。3. 为…