Elasticsearch:将最大内积引入 Lucene

作者:Benjamin Trent

目前,Lucene 限制 dot_product (点积) 只能在标准化向量上使用。 归一化迫使所有向量幅度等于一。 虽然在许多情况下这是可以接受的,但它可能会导致某些数据集的相关性问题。 一个典型的例子是 Cohere 构建的嵌入(embeddings)。 它们的向量使用幅度来提供更多相关信息。

那么,为什么不允许点积中存在非归一化向量,从而实现最大内积呢? 有什么大不了的?

负值和 Lucene 优化

Lucene要求分数非负,因此在析取 (disjunctive query) 查询中多匹配一个子句只能使分数更高,而不是更低。 这实际上对于动态修剪优化(例如 block-max WAND)非常重要,如果某些子句可能产生负分数,则其效率会大大降低。 此要求如何影响非标准化向量?

在归一化情况下,所有向量都在单位球面上。 这允许通过简单的缩放来处理负分数。

图 1:二维单位球体(例如单位圆)中的两个相反的二维向量。 在这里计算点积时,最糟糕的情况是 -1 = [1, 0] * [-1, 0]。 Lucene 通过向结果加 1 来解决这一问题。

当向量保持其大小时,可能值的范围是未知的。

图 2:计算这些向量的点积时 [2, 2] \* [-5, -5] = -20

为了允许 Lucene 将 blockMax WAND 与非标准化向量结合使用,我们必须缩放分数。 这是一个相当简单的解决方案。 Lucene 将使用简单的分段函数缩放非标准化向量:

if (dotProduct < 0) {return 1 / (1 + -1 * dotProduct);
}
return dotProduct + 1;

现在,所有负分数都在 0 -1 之间,所有正分数都在 1 以上。这仍然可以确保较高的值意味着更好的匹配并消除负分数。 很简单,但这不是最后的障碍。

三角形问题

最大内积不遵循与简单欧几里得空间相同的规则。 三角不等式的简单假设知识被抛弃。 不直观的是,向量不再最接近其自身。 这可能会令人不安。 Lucene 的向量底层索引结构是分层可导航小世界 (HNSW)。 这是基于图的算法,它可能依赖于欧几里得空间假设。 或者在非欧几里得空间中探索图会太慢吗?

一些研究表明,快速搜索需要转换到欧几里得空间。 其他人则经历了更新向量存储以强制转换为欧几里得空间的麻烦。

这导致我们停下来深入挖掘一些数据。 关键问题是:HNSW 是否通过最大内积搜索提供良好的召回率和延迟? 虽然 HNSW 最初的论文和其他已发表的研究表明确实如此,但我们需要进行尽职调查。

我们进行的实验很简单。 所有的实验都是在真实数据集或稍微修改的真实数据集上进行的。 这对于基准测试至关重要,因为现代神经网络创建符合特定特征的向量(请参阅本文第 7.8 节中的讨论)。 我们测量了非标准化向量的延迟(以毫秒为单位)与召回率。 将数字与具有相同测量值但采用欧几里德空间变换的数字进行比较。 在每种情况下,向量都被索引到 Lucene 的 HNSW 实现中,并且我们测量了 1000 次查询迭代。 每个数据集考虑了三种单独的情况:按大小顺序插入的数据(从小到大)、按随机顺序插入的数据以及按相反顺序插入的数据(从大到小)。

以下是 Cohere 真实数据集的一些结果:

图 3:以下是嵌入维基百科文章的 Cohere 多语言模型的结果。 可在 HuggingFace 上找到。 前 10 万份文档已建立索引并进行了测试。

图 4:这是 Cohere 在维基百科上的英语和日语嵌入的混合。 这两个数据集都可以在 HuggingFace 上找到。

我们还针对一些合成数据集进行了测试,以确保我们的严谨性。 我们使用 e5-small-v2 创建了一个数据集,并通过不同的统计分布缩放了向量的大小。 为了简洁起见,我将仅显示两个分布。

图 5: 幅度  Pareto distribution 。 pareto distribution 具有“肥尾”,这意味着分布的一部分的幅度比其他部分大得多。

图 6:幅度的伽马分布。 这种分布可能具有很高的方差,并使其在我们的实验中独一无二。

在我们所有的实验中,唯一需要进行转换的是使用伽玛分布创建的合成数据集。 即使这样,向量也必须以相反的顺序插入,首先是最大幅度,以证明变换的合理性。 这些都是例外情况。

如果你想了解所有实验以及整个过程中的所有错误和改进,请参阅 Lucene Github 问题,其中包含所有详细信息(以及过程中的错误)。 这是一个开放式研究和开发的项目!

结论

这是一个相当长的旅程,需要进行多次调查才能确保 Lucene 能够支持最大内积。 我们相信数据不言自明。 无需进行重大转换或对 Lucene 进行重大更改。 所有这些工作将很快解锁 Elasticsearch 的最大内积支持,并允许 Cohere 提供的模型成为 Elastic Stack 中的一等公民。

注:最大内积已经在 8.11 中进行了支持!

原文:Bringing Maximum-Inner-Product into Lucene — Elastic Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161566.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 Lhotse 高效管理音频数据集

Lhotse 是一个旨在使语音和音频数据准备更具灵活性和可访问性的 Python 库&#xff0c;它与 k2 一起&#xff0c;构成了下一代 Kaldi 语音处理库的一部分。 主要目标&#xff1a; 1. 以 Python 为中心的设计吸引更广泛的社区参与语音处理任务。 2. 为有经验的 Kaldi 用户提供…

SpringBoot——启动类的原理

优质博文&#xff1a;IT-BLOG-CN SpringBoot启动类上使用SpringBootApplication注解&#xff0c;该注解是一个组合注解&#xff0c;包含多个其它注解。和类定义SpringApplication.run要揭开SpringBoot的神秘面纱&#xff0c;我们要从这两位开始就可以了。 SpringBootApplicati…

Spring实例化对象

默认proxyBeanMethods true&#xff0c;这种方法是用的代理模式创建对象&#xff0c;每次创建都是同一个对象&#xff0c;如果改为false每次都是不同的对象 FactoryBean的使用 定义的类A&#xff0c;造出来一个类B&#xff0c;可以在创造bean之前做一些自己的个性化操作

MFS分布式文件系统

目录 集群部署 Master Servers ​Chunkservers ​编辑Clients Storage Classes LABEL mfs高可用 pacemaker高可用 ​编辑ISCSI 添加集群资源 主机 ip 角色 server1 192.168.81.11 Master Servers server2 192.168.81.12 Chunkservers server3 192.168.81.13 Chunkserver…

【产品安全平台】上海道宁与Cybellum将整个产品安全工作流程整合到一个专用平台中,保持构建的互联产品的网络安全和网络合规性

Cybellum将 整个产品安全工作流程 整合到一个专用平台中 使设备制造商能够 保持他们构建的互联产品的 网络安全和网络合规性 产品安全性对 每个人来说都不一样 每个行业的系统、工作流程和 法规都存在根本差异 因此&#xff0c;Cybellum量身定制了 Cybellum的平台和技…

为何内存不够用?微服务改造启动多个Spring Boot的陷阱与解决方案

在生产环境中我们会遇到一些问题&#xff0c;此文主要记录并复盘一下当时项目中的实际问题及解决过程。 背景简述 最初系统上线后都比较正常风平浪静的。在系统运行了一段时间后&#xff0c;业务量上升后&#xff0c;生产上发现java应用内存占用过高&#xff0c;服务器总共64…

爱创科技总裁谢朝晖荣获“推动医药健康产业高质量发展人物”

中国医药市场规模已经成为全球第二大医药市场&#xff0c;仅次于美国。近年来&#xff0c;随着中国经济的持续增长和人民生活水平的提高&#xff0c;医药市场需求不断扩大。政府对医疗卫生事业的投入也在不断加大&#xff0c;为医药行业的发展创造了良好的政策环境。为推动医药…

结构体与指针_sizeof_static_extern_函数指针数组_函数指针_回调函数

一、结构体与指针 #include <stdint.h> #include <stdlib.h> #include <stdio.h> #define up_to_down(uuu) (downdemo_t *)(uuu->beg) #define __plc__ typedef struct updemo_s{uint8_t *head;uint8_t *beg;uint8_t *end; }updemo_t; typedef struct do…

陪玩圈子系统APP小程序H5,详细介绍,源码交付,支持二开!

陪玩圈子系统&#xff0c;页面展示&#xff0c;源码交付&#xff0c;支持二开&#xff01; 陪玩后端下载地址&#xff1a;电竞开黑陪玩系统小程序&#xff0c;APP&#xff0c;H5: 本系统是集齐开黑&#xff0c;陪玩&#xff0c;陪聊于一体的专业APP&#xff0c;小程序&#xff…

Linux进程通信——共享内存

概念 共享内存&#xff08;Shared Memory&#xff09;&#xff0c;指两个或多个进程共享一个给定的存储区。 特点 共享内存是最快的一种 IPC&#xff0c;因为进程是直接对内存进行存取。 因为多个进程可以同时操作&#xff0c;所以需要进行同步。 信号量共享内存通常结合在一…

Open3D (C++) 计算两点云之间的最小距离

目录 一、 算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、 算法原理 Open3D中ComputePointCloudDistance函数提供了计算从源点云到目标点云的距离的方法,计算点云的距离。也…

【C语法学习】26 - strcmp()函数

文章目录 1 函数原型2 参数3 返回值4 比较机制5 示例5.1 示例1 1 函数原型 strcmp()&#xff1a;比较str1指向的字符串和str2指向的字符串&#xff0c;函数原型如下&#xff1a; int strcmp(const char *str1, const char *str2);2 参数 strcmp()函数有两个参数str1和str2&a…

HCIP-四、MUX-vlanSuper-vlan+端口安全

四、MUX-vlan&Super-vlan端口安全 MUX-vlan实验拓扑实验需求及解法1. 在SW1/2/3分别创建vlan10 20 30 402. SW1/2/3之间使用trunk链路&#xff0c;仅允许vlan10 20 30 40 通过。3. SW与PC/Server之间使用access链路。4. ping验证&#xff1a; Super-vlan端口安全实验拓扑实…

【腾讯云云上实验室-向量数据库】腾讯云开创新时代,发布全新向量数据库Tencent Cloud VectorDB

前言 随着人工智能、数据挖掘等技术的飞速发展&#xff0c;海量数据的存储和分析越来越成为重要的研究方向。在海量数据中找到具有相似性或相关性的数据对于实现精准推荐、搜索等应用至关重要。传统关系型数据库存在一些缺陷&#xff0c;例如存储效率低、查询耗时长等问题&…

CentOS使用docker安装OpenGauss数据库

1.搜索OpenGauss docker search opengauss 2.选择其中一个源拉取 docker pull docker.io/enmotech/opengauss 3.运行OpenGauss docker run --name opengauss --privilegedtrue --restartalways -d -e GS_USERNAMEpostgres -e GS_PASSWORDmyGauss2023 -p 5432:5432 docker.…

黑马React18: ReactRouter

黑马React: ReactRouter Date: November 21, 2023 Sum: React路由基础、路由导航、导航传参、嵌套路由配置 路由快速上手 1. 什么是前端路由 一个路径 path 对应一个组件 component 当我们在浏览器中访问一个 path 的时候&#xff0c;path 对应的组件会在页面中进行渲染 2. …

2023年中国高压驱动芯片分类、市场规模及发展趋势分析[图]

高压驱动芯片是一种能在高压环境下工作的集成电路&#xff0c;主要用于控制和驱动各种功率器件&#xff0c;如继电器、电磁阀、电机、变频器等。高压驱动芯片根据其输出电流的大小和形式可分为两类恒流型和开关型。 高压驱动芯片分类 资料来源&#xff1a;共研产业咨询&#x…

蓝桥杯算法双周赛心得——迷宫逃脱(记忆化搜索)

大家好&#xff0c;我是晴天学长&#xff0c;非常经典实用的记忆化搜索题&#xff0c;当然也可以用dp做&#xff0c;我也会发dp的题解&#xff0c;需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 1) .迷宫逃脱 迷官逃脱…

ubuntu操作系统中docker下Hadoop分布式前置环境配置实验

版本&#xff1a; centos7 hadoop 3.1.3 java JDK:1.8 集群规划&#xff1a; masterslave1slave2HDFS NameNode DataNode DataNode SecondryNameNode DataNode YARNNodeManager ResourceManage NodeManager NodeManager 1.docker容器&#xff1a; 把普通用户加入到docker组&am…

opencv-Canny 边缘检测

Canny边缘检测是一种经典的图像边缘检测算法&#xff0c;它在图像中找到强度梯度的变化&#xff0c;从而识别出图像中的边缘。Canny边缘检测的优点包括高灵敏度和低误检率。 在OpenCV中&#xff0c;cv2.Canny() 函数用于执行Canny边缘检测。 基本语法如下&#xff1a; edges…