本地训练,开箱可用,Bert-VITS2 V2.0.2版本本地基于现有数据集训练(原神刻晴)

在这里插入图片描述

按照固有思维方式,深度学习的训练环节应该在云端,毕竟本地硬件条件有限。但事实上,在语音识别和自然语言处理层面,即使相对较少的数据量也可以训练出高性能的模型,对于预算有限的同学们来说,也没必要花冤枉钱上“云端”了,本次我们来演示如何在本地训练Bert-VITS2 V2.0.2模型。

Bert-VITS2 V2.0.2基于现有数据集

目前Bert-VITS2 V2.0.2大体上有两种训练方式,第一种是基于现有数据集,即原神各角色已经标注好的语音数据,这部分内容是公开的,但是不能商用,可以在这里下载:

https://pan.ai-hobbyist.org/Genshin%20Datasets/%E4%B8%AD%E6%96%87%20-%20Chinese/%E5%88%86%E8%A7%92%E8%89%B2%20-%20Single/%E8%A7%92%E8%89%B2%E8%AF%AD%E9%9F%B3%20-%20Character

我们只需要选择喜欢的角色进行下载即可:

第二种是没有现有的数据集,即假设我们想克隆地球人随便任意一个人的声音,这种情况下我们需要收集这个人的语音素材,然后自己制作数据集。

本次我们只演示第一种训练方式,即训练现有数据集的原神角色,第二种暂且按下不表。

Bert-VITS2 V2.0.2配置模型

首先克隆项目:

git clone https://github.com/v3ucn/Bert-VITS2_V202_Train.git

随后下载新版的bert模型:

链接:https://pan.baidu.com/s/11vLNEVDeP_8YhYIJUjcUeg?pwd=v3uc

下载成功后,解压放入项目的bert目录,目录结构如下所示:

E:\work\Bert-VITS2-v202\bert>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
│   bert_models.json  
│  
├───bert-base-japanese-v3  
│       config.json  
│       README.md  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───bert-large-japanese-v2  
│       config.json  
│       README.md  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───chinese-roberta-wwm-ext-large  
│       added_tokens.json  
│       config.json  
│       pytorch_model.bin  
│       README.md  
│       special_tokens_map.json  
│       tokenizer.json  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───deberta-v2-large-japanese  
│       config.json  
│       pytorch_model.bin  
│       README.md  
│       special_tokens_map.json  
│       tokenizer.json  
│       tokenizer_config.json  
│  
└───deberta-v3-large  config.json  generator_config.json  pytorch_model.bin  README.md  spm.model  tokenizer_config.json

随后下载预训练模型:

https://openi.pcl.ac.cn/Stardust_minus/Bert-VITS2/modelmanage/model_readme_tmpl?name=Bert-VITS2%E4%B8%AD%E6%97%A5%E8%8B%B1%E5%BA%95%E6%A8%A1-fix

放入项目的pretrained_models目录,如下所示:

E:\work\Bert-VITS2-v202\pretrained_models>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  DUR_0.pth  D_0.pth  G_0.pth

接着把上文提到的刻晴数据集放入项目的Data目录中的raw目录:

E:\work\Bert-VITS2-v202\Data\keqing\raw\keqing>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
vo_card_keqing_endOfGame_fail_01.lab  
vo_card_keqing_endOfGame_fail_01.wav

如果想定制化目录结构,可以修改config.yml文件:

bert_gen:  config_path: config.json  device: cuda  num_processes: 2  use_multi_device: false  
dataset_path: Data\keqing  
mirror: ''  
openi_token: ''  
preprocess_text:  clean: true  cleaned_path: filelists/cleaned.list  config_path: config.json  max_val_total: 8  train_path: filelists/train.list  transcription_path: filelists/short_character_anno.list  val_path: filelists/val.list  val_per_spk: 5  
resample:  in_dir: raw  out_dir: raw  sampling_rate: 44100

至此,模型和数据集就配置好了。

Bert-VITS2 V2.0.2数据预处理

标注好的原始数据集并不能够直接进行训练,需要预处理一下,首先需要将原始数据文件转写成为标准的标注文件:

python3 transcribe_genshin.py

生成好的文件:

Data\keqing\raw/keqing/vo_card_keqing_endOfGame_fail_01.wav|keqing|ZH|我会勤加练习,拿下下一次的胜利。  
Data\keqing\raw/keqing/vo_card_keqing_endOfGame_win_01.wav|keqing|ZH|胜负本是常事,不必太过挂怀。  
Data\keqing\raw/keqing/vo_card_keqing_freetalk_01.wav|keqing|ZH|这「七圣召唤」虽说是游戏,但对局之中也隐隐有策算谋略之理。

这里ZH代表中文,新版的Bert-VITS2 V2.0.2也支持日文和英文,代码分别为JP和EN。

随后对文本进行预处理以及生成bert模型可读文件:

python3 preprocess_text.py  python3 bert_gen.py

执行后会产生训练集和验证集文件:

E:\work\Bert-VITS2-v202\Data\keqing\filelists>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  cleaned.list  short_character_anno.list  train.list  val.list

检查无误后,数据预处理就完成了。

Bert-VITS2 V2.0.2本地训练

万事俱备,只差训练。先不要着急,打开Data/keqing/config.json配置文件:

{  "train": {  "log_interval": 50,  "eval_interval": 50,  "seed": 42,  "epochs": 200,  "learning_rate": 0.0001,  "betas": [  0.8,  0.99  ],  "eps": 1e-09,  "batch_size": 8,  "fp16_run": false,  "lr_decay": 0.99995,  "segment_size": 16384,  "init_lr_ratio": 1,  "warmup_epochs": 0,  "c_mel": 45,  "c_kl": 1.0,  "skip_optimizer": false  },  "data": {  "training_files": "Data/keqing/filelists/train.list",  "validation_files": "Data/keqing/filelists/val.list",  "max_wav_value": 32768.0,  "sampling_rate": 44100,  "filter_length": 2048,  "hop_length": 512,  "win_length": 2048,  "n_mel_channels": 128,  "mel_fmin": 0.0,  "mel_fmax": null,  "add_blank": true,  "n_speakers": 1,  "cleaned_text": true,  "spk2id": {  "keqing": 0  }  },  "model": {  "use_spk_conditioned_encoder": true,  "use_noise_scaled_mas": true,  "use_mel_posterior_encoder": false,  "use_duration_discriminator": true,  "inter_channels": 192,  "hidden_channels": 192,  "filter_channels": 768,  "n_heads": 2,  "n_layers": 6,  "kernel_size": 3,  "p_dropout": 0.1,  "resblock": "1",  "resblock_kernel_sizes": [  3,  7,  11  ],  "resblock_dilation_sizes": [  [  1,  3,  5  ],  [  1,  3,  5  ],  [  1,  3,  5  ]  ],  "upsample_rates": [  8,  8,  2,  2,  2  ],  "upsample_initial_channel": 512,  "upsample_kernel_sizes": [  16,  16,  8,  2,  2  ],  "n_layers_q": 3,  "use_spectral_norm": false,  "gin_channels": 256  },  "version": "2.0"  
}

这里需要调整的参数是batch_size,如果显存不够,需要往下调整,否则会出现“爆显存”的问题,假设显存为8G,那么该数值最好不要超过8。

与此同时,首次训练建议把log_interval和eval_interval参数调小一点,即训练的保存间隔,方便训练过程中随时进行推理验证。

随后输入命令,开始训练:

python3 train_ms.py

程序返回:

11-22 13:20:28 INFO     | data_utils.py:61 | Init dataset...  
100%|█████████████████████████████████████████████████████████████████████████████| 581/581 [00:00<00:00, 48414.40it/s]  
11-22 13:20:28 INFO     | data_utils.py:76 | skipped: 31, total: 581  
11-22 13:20:28 INFO     | data_utils.py:61 | Init dataset...  
100%|████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<?, ?it/s]  
11-22 13:20:28 INFO     | data_utils.py:76 | skipped: 0, total: 5  
Using noise scaled MAS for VITS2  
Using duration discriminator for VITS2  
INFO:models:Loaded checkpoint 'Data\keqing\models\DUR_0.pth' (iteration 7)  
INFO:models:Loaded checkpoint 'Data\keqing\models\G_0.pth' (iteration 7)  
INFO:models:Loaded checkpoint 'Data\keqing\models\D_0.pth' (iteration 7)

说明训练已经开始了。

训练过程中,可以通过命令:

python3 -m tensorboard.main --logdir=Data/keqing/models

来查看loss损失率,访问:

http://localhost:6006/#scalars

一般情况下,训练损失率低于50%,并且损失函数在训练集和验证集上都趋于稳定,则可以认为模型已经收敛。收敛的模型就可以为我们所用了,如何使用训练好的模型,请移步:又欲又撩人,基于新版Bert-vits2V2.0.2音色模型雷电将军八重神子一键推理整合包分享,囿于篇幅,这里不再赘述。

训练好的模型存放在Data/keqing/models目录:

E:\work\Bert-VITS2-v202\Data\keqing\models>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
│   DUR_0.pth  
│   DUR_550.pth  
│   DUR_600.pth  
│   DUR_650.pth  
│   D_0.pth  
│   D_600.pth  
│   D_650.pth  
│   events.out.tfevents.1700625154.ly.24008.0  
│   events.out.tfevents.1700630428.ly.20380.0  
│   G_0.pth  
│   G_450.pth  
│   G_500.pth  
│   G_550.pth  
│   G_600.pth  
│   G_650.pth  
│   train.log  
│  
└───eval  events.out.tfevents.1700625154.ly.24008.1  events.out.tfevents.1700630428.ly.20380.1

需要注意的是,首次训练需要将预训练模型拷贝到models目录。

结语

除了中文,Bert-VITS2 V2.0.2也支持日语和英语,同时提供中英日混合的Mix推理模式,欲知后事如何,且听下回分解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161537.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云 ACK 新升级,打造智算时代的现代化应用平台

云布道师 今天&#xff0c;能想到的或是想不到的领域&#xff0c;对容器和 Kubernetes 的需求都居高不减&#xff0c;使这项技术正在真正走向无处不在。 在 2023 云栖大会上&#xff0c;阿里云云原生产品线容器服务负责人易立关于容器服务 ACK 在本届亚运会上应用的介绍&#…

在 VSCode 中使用 GDB 进行 C/C++ 程序调试(图文版)

(꒪ꇴ꒪ )&#xff0c;Hello我是祐言QAQ我的博客主页&#xff1a;C/C语言&#xff0c;数据结构&#xff0c;Linux基础&#xff0c;ARM开发板&#xff0c;网络编程等领域UP&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff0c;让我们成为一个强大的攻城狮&#xff0…

webpack loader

1、分类 2、执行顺序 配置类型 执行顺序是 loader1>loader2>loader3 3、使用方式 自己的第一个loader 同步loader /*** loader 就是一个函数* 当webpack 解释资源时&#xff0c; 会调用相应的loader去处理* loader 接收到文件内容作为参数&#xff0c;返回文件内容* p…

ios qt开发要点

目前关于ios qt的开发资料比较少&#xff0c;这里整理了几个比较重要的开发要点&#xff0c;基于MacOS14 Xcode15 Qt15.5 cmake iphone真机。 cmake报错&#xff0c;报错信息如下 CMake Error at /Users/user/Qt/5.15.5/ios/lib/cmake/Qt5Core/Qt5CoreConfig.cmake:91 (m…

CSM32RV003:国产高精度16位ADC低功耗RISC-V内核MCU

目录 高精度ADC工业应用工业数据采集应用CSM32RV003简介主要特性 高精度ADC工业应用 高精度ADC即高精度模数转换器&#xff0c;是一种能够将输入模拟信号转换为数字信号的芯片&#xff0c;在多种消费电子、工业、医疗和科研领域都有广泛应用。高精度ADC的主要特点是能够提供高…

深度学习图像修复算法 - opencv python 机器视觉 计算机竞赛

文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步&#xff1a;将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…

vue3引入vuex基础

一&#xff1a;前言 使用 vuex 可以方便我们对数据的统一化管理&#xff0c;便于各组件间数据的传递&#xff0c;定义一个全局对象&#xff0c;在多组件之间进行维护更新。因此&#xff0c;vuex 是在项目开发中很重要的一个部分。接下来让我们一起来看看如何使用 vuex 吧&#…

Apache访问控制

服务器相关的访问控制 Options指令 Options指令是Apache服务器配置文件中的一个重要指令,它可以用于控制特定目录启用哪些服务器特性。Options指令可以在Apache服务器的核心配置、虚拟主机配置、特定目录配置以及.htaccess文件中使用。 以下是一些常用的服务器特性选项: N…

Django(九、cookie与session)

文章目录 一、cookie与session的介绍HTTP四大特性 cookiesession Django操作cookie三板斧基于cookie的登录功能 一、cookie与session的介绍 在讲之前我们先来回忆一下HTTP的四大特性 HTTP四大特性 1.基于请求响应 2.基于TIC、IP作用于应用层上的协议 3.无状态 保存…

边缘计算多角色智能计量插座 x 资产显示标签:实现资产追踪与能耗管理的无缝结合

越来越多智慧园区、智慧工厂、智慧医院、智慧商业、智慧仓储物流等企业商家对精细化、多元化智能生态应用场景的提升&#xff0c;顺应国家节能减排、环保的时代潮流&#xff0c;设计一款基于融合以太网/WiFi/蓝牙智能控制的智能多角色插座应运而生&#xff0c;赋予智能插座以遥…

uniapp实现表单弹窗

uni.showModal({title: 删除账户,confirmColor:#3A3A3A,cancelColor:#999999,confirmText:确定,editable:true,//显示content:请输入“delete”删除账户,success: function (res) {console.log(res)if(res.confirm){if(res.contentdelete){console.log(123123123213)uni.setSto…

PCIE链路训练-状态跳转1

A&#xff1a;12ms超时&#xff0c;或者再任何lane上检测到Electrical Idle Exit&#xff1b; B&#xff1a; 1.发送“receiver detection”之后没有一个lane的接收逻辑被rx检测到 2.不满足条件c&#xff0c;比如两次detection出现差别&#xff1b; C&#xff1a;发送端在没…

Ps:背景橡皮擦工具抠图实例

背景橡皮擦工具 Background Eraser Tool由于是一个破坏性的工具&#xff08;直接删除像素&#xff09;而少被人使用。 其实&#xff0c;它不仅是一个功能强大的抠图工具&#xff0c;也是可以转换为非破坏性运用的。 原图&#xff08;注&#xff1a;图片来自网络&#xff09; 效…

微软离Altman越近,离OpenAI就越远!

大数据产业创新服务媒体 ——聚焦数据 改变商业 在OpenAI这场连续剧中&#xff08;之所以说是连续剧&#xff0c;这个事情肯定没完&#xff0c;后面肯定还会出续集&#xff09;&#xff0c;让我倍感意外的是&#xff0c;Altman刚跟OpenAI分手&#xff0c;“离婚手续”都还没办…

使用Pytorch从零开始构建WGAN

引言 在考虑生成对抗网络的文献时&#xff0c;Wasserstein GAN 因其与传统 GAN 相比的训练稳定性而成为关键概念之一。在本文中&#xff0c;我将介绍基于梯度惩罚的 WGAN 的概念。文章的结构安排如下&#xff1a; WGAN 背后的直觉&#xff1b;GAN 和 WGAN 的比较&#xff1b;…

minio集群部署(k8s内)

一、前言 minio的部署有几种方式&#xff0c;分别是单节点单磁盘&#xff0c;单节点多磁盘&#xff0c;多节点多磁盘三种方式&#xff0c;本次部署使用多节点多磁盘的方式进行部署&#xff0c;minio集群多节点部署最低要求需要4个节点&#xff0c;集群扩容时也是要求扩容的节点…

2、数仓理论概述与相关概念

1、问&#xff1a;数据仓库 建设过程中 经常会遇到那些问题&#xff1f; 模型(逻辑)重复建设 数据不一致性 维度不一致&#xff1a;命名、维度属性值、维度定义 指标不一致&#xff1a;命名、计算口径 数据不规范(字段命名、表名、分层、主题命名规范) 2、OneData数据建设核心方…

python爬虫HMAC加密案例:某企业信息查询网站

声明&#xff1a; 该文章为学习使用&#xff0c;严禁用于商业用途和非法用途&#xff0c;违者后果自负&#xff0c;由此产生的一切后果均与作者无关 一、找出需要加密的参数 js运行 atob(‘aHR0cHM6Ly93d3cucWNjLmNvbS93ZWIvc2VhcmNoP2tleT0lRTQlQjglODclRTglQkUlQkUlRTklOUI…

飞桨——总结PPOCRLabel中遇到的坑

操作系统&#xff1a;win10 python环境&#xff1a;python3.9 paddleocr项目版本&#xff1a;2.7 1.报错&#xff1a;ModuleNotFoundError: No module named Polygon&#xff08;已解决&#xff09; 已解决所以没有复现报错内容 尝试方法一&#xff1a;直接使用pip命令安装&…

ts实现合并数组对象中key相同的数据

背景 在平常的业务中&#xff0c;后端同学会返回以下类似的结构数据 // 后端返回的数据结构 [{ id: 1, product_id: 1, pid_name: "Asia", name: "HKG01" },{ id: 2, product_id: 1, pid_name: "Asia", name: "SH01" },{ id: 3, pro…