微软离Altman越近,离OpenAI就越远!

06885cd22dd02d81e558ff58c7b54f35.png

9e47f448fdbb8092d1d203618d42ee4b.png




大数据产业创新服务媒体

——聚焦数据 · 改变商业


在OpenAI这场连续剧中(之所以说是连续剧,这个事情肯定没完,后面肯定还会出续集),让我倍感意外的是,Altman刚跟OpenAI分手,“离婚手续”都还没办齐,转头就投入了微软的怀抱,火线入职微软。如果说他们之前是“清白”的,没有勾连,这谁能信。

b9bf29528599b0f9ad62de25568c17dd.png

这说明一个问题,OpenAI罢免Altman,并没有冤枉他。为什么这么说?我们来详细说道说道。

不被科技巨头控制,是OpenAI绝对的红线

我们需要回顾一下,OpenAI成立的初衷是什么?当初,马斯克和阿尔特曼等人,担心谷歌垄断人工智能,尤其是担心DeepMind率先开发出AGI,这样的技术被谷歌垄断,对人类不利。所以,几个人一合计,决定创立一个开源的、非盈利的组织,避免AGI这样的技术被谷歌这样的巨头所垄断。

担心被谷歌垄断,创立的OpenAI,后来却与微软越走越近。所以,越来越多人担心,OpenAI被微软控制。刚逃出谷歌的狼窝,转头就进入微软的虎穴,搞了半天折腾了一个寂寞,那创立OpenAI是为了什么?

所以,在OpenAI原教旨主义者(遵守《OpenAI宪章》)的一群人眼中,如果说Altman过渡商业化以及对安全风险的忽视,还可以谅解,但跟微软“眉来眼去”是绝对不能容忍的。他们不会容忍自己为人类创建AGI的果实,被微软偷偷摘了桃子。

但事实情况是,在Altman的主导下,OpenAI与微软的关系越来越暧昧。

某种程度上,OpenAI已经被微软“包了饺子”,已经成为一块“夹心饼干”。何出此言?

在目前的结构中,ChatGPT的底层算力,用的是微软云,也就是说微软云是OpenAI的底层基础设施;在上层,微软的必应、Office365等多个应用,都全面接入ChatGPT。某种程度上,微软控制了ChatGPT的商业化应用,尤其是B端商业化应用。

上层应用和下层基础设施,都被微软控制,而且微软的巨额投资还让其股份占比越来越大,OpenAI可不就是被微软“包饺子”了么?

而主导这一切的,无疑就是Altman。难怪当得知Altman被罢免时,听说微软的CEO纳德拉异常愤怒。

此次,Altman前脚刚离开OpenAI,后脚就入职微软,这要说他们之前没“奸情”,谁能信?Altman与纳德拉在推特(“X”)上的互动,看着都有点肉麻。

27b42c74117dc7e1fa43227f69306f07.png

微软离Altman越近,离OpenAI越远!

既然Altman与OpenAI闹掰了,并投入微软怀抱。那接下来一个关键的看点,就是微软怎么处理OpenAI的关系。

在探讨微软与OpenAI的未来关系时,我们可以轻松地将这场科技界的“肥皂剧”概括为两个剧本。

第一个剧本:想象一下微软扮演着一位精明的赌徒,左手拿着内部大模型的筹码,右手紧握着OpenAI的合作协议。这就是第一种可能性,其中微软在两个大牌中间游刃有余地下注。

他们会继续在Sam Altman的带领下,研发更强大的AI模型,同时也不松开与OpenAI的紧密合作。在这个方案中,微软既是OpenAI的金主又是其技术合作伙伴,同时将ChatGPT这样的黑科技紧密融入其商业战略。

第二个剧本:微软突然变脸,与OpenAI之间的关系变得岌岌可危。想象一下,微软突然撤回所有资金、算力资源,同时将ChatGPT这个曾经的明星产品从自己的业务版图中一刀切。这种情况下,微软可能会自行研发类似的技术,或者寻找新的合作伙伴,而OpenAI则需要迅速找到新的资金来源和技术支持。

不管哪种情况,微软和OpenAI的未来走向都将对整个科技界产生深远的影响。我们只能拭目以待,看看这场戏码最后会如何上演。

微软怎么做,可能很大程度上取决于OpenAI接下来的行为。OpenAI会怎么做,还有很大的不确定性,毕竟现在OpenAI还要靠金主爸爸们养活。

但是,有一点可以肯定,OpenAI与微软的蜜月期结束了。OpenAI会更加注重自己的独立性,这种独立性可能表现在三个方面:

首先,在融资这块,OpenAI将不再满足于仅仅依赖微软这一个“金主爸爸”。他们可能会像勇敢的探险家一样,走出舒适区,寻找更多的资金来源。这可能包括吸引更多风险投资者的关注,甚至敲响上市的大门。通过这些手段,OpenAI能够减少对微软的财务依赖,从而在财务上更加自立。

其次,在算力这一块,OpenAI可能会像一位智慧的农夫,不再只种一块地。他们可能考虑多云策略,既使用微软云,也采用亚马逊AWS、谷歌云等其他云服务提供商的资源。这不仅能降低对单一供应商的依赖风险,还可能带来成本效益。甚至,OpenAI也可能像个勤劳的建筑工人,自己动手,丰衣足食,建设自己的GPU计算集群。

最后,在商业化方面,OpenAI的策略可能会像一位多面手艺人,不再只依赖微软的“全家桶”。他们可能会拓宽自己的商业合作网络,与更多第三方企业合作,将自己的产品和服务,比如ChatGPT,融入到更广泛的业务场景中。这不仅能增强OpenAI的市场影响力,还能提高其产品的多样性和竞争力。

微软和OpenAI的关系,现在就像一对曾经激情四射的情侣,逐渐步入了理性的“亲情时代”。OpenAI作为这段关系中渐趋成熟的一方,明显开始寻求更多的自主权和独立性。

入职微软的Altman,能复制ChatGPT么?

还有一个问题很关键,那就是Altman加入微软,大概率做的事情跟OpenAI差不多。而且,OpenAI很可能有不少员工,会追随Altman。微软现在的态度是,要钱给钱,要人给人,要资源管够,摆出一副誓要干翻OpenAI的态势。

那么,Altman能在微软做出一个媲美甚至超越GPT-4的产品么?我对此持怀疑态度。

为什么这么说?

在Altman加入之前,微软就没有加足马里搞大模型么?显然不是,但凡微软自己能搞出一个ChatGPT这样好的产品,他会愿意受OpenAI这份气?

事实上,不仅微软,谷歌、亚马逊等一众科技巨头,哪一个不是卯足劲推进自己的大模型项目?这么久过去了,有人成功么?别说微软,就是发明了Transfomer架构的谷歌,现在自己的大模型产品都还拿不出手。

要论人才、资源,这些科技巨头哪一个不能碾压OpenAI?那他们为什么现在都拿不出媲美ChatGPT的产品?

有一个关键的原因,那就是大模型本身就是一个黑箱。别说谷歌、微软,就是OpenAI自己,让他从头走一遍,都不一定能做成现在的ChatGPT,这是他们自己承认的。

直到现在,没有任何人能搞清楚大模型具体的工作机理,更搞不清楚大模型的智能是怎么“涌现”出来的。在未来几年内,都不太可能能解开大模型的黑箱。

大模型的能力,不像是一个标准的数学函数,可以一步步的推理出来。并没有一个标准的步骤,来告诉人们怎么一步步搭建出一个GPT-4。现在的ChatGPT,有一定的“运气”成分在里面,在大量的试错中,一点点试出来的。

大模型的“黑箱”问题是来自于哪里呢?

大型神经网络模型如GPT系列的非线性和复杂的内部结构,是理解其工作机制的一大难点。这些模型包含多个处理层,每层都进行着复杂的数学运算,而层与层之间的相互作用又增加了额外的复杂性。正是这些非线性层的叠加和交互,使得模型能够从简单的输入数据中提取出复杂的模式和关联,从而执行复杂的任务,如语言理解和生成。

非线性是神经网络中的核心特征,它允许网络捕捉输入数据中的复杂、非直观的关系。每个神经元(或节点)在接收输入后,通过非线性激活函数处理信息,这些激活函数决定了信息是否及如何传递到网络的下一层。由于每个激活函数的输出不是输入的线性映射,模型能够学习并表现出高度复杂的数据表示。

然而,正是这种非线性和层间复杂的交互,也造成了理解上的困难。当上千亿个这样的非线性神经元相互作用时,理解每个单独神经元的贡献、追踪信息在网络中的具体流动路径,以及预测网络对特定输入的反应,都变得异常复杂。这不仅需要深刻的数学和编程知识,还需要对模型架构的深入理解。

因此,大型神经网络模型的非线性和复杂的内部结构,是使其成为“黑箱”的重要因素之一。这些模型虽然在处理复杂任务时显示出惊人的能力,但同时也带来了理解和解释上的重大挑战。

此外,参数量巨大、训练数据复杂,进一步加剧了“黑箱”问题。上千亿参数在训练过程中通过机器学习算法调整以优化性能,但正是因为这些参数众多且相互关联,使得理解模型的具体决策过程变得异常复杂。而数据的多样性和丰富性,意味着模型在学习过程中接触到各种各样的信息和语境,这使得追踪模型为何作出特定响应变得更加困难。

正因为大模型本身的黑箱属性,让“复制”ChatGPT并不是一个容易的事情。别说是Altman,就是现在OpenAI的几百号员工,全部转到微软去,在短期内也不太可能做出另外一个ChatGPT。

而且,说实话,Altman的优势在于融资与商业化,而不在于技术。OpenAI真正的技术大牛,是llya。而Altman这样的商业化人才,在微软简直不要太多。

如果我们真的接近AGI,那相比于被微软、谷歌这样追求商业利益最大化的科技巨头垄断,我更希望OpenAI这样的非盈利组织能够率先造出AGI。

商业公司,特别是大型科技企业,通常以利润最大化为主要目标。他们在开发AGI时可能会优先考虑商业应用和市场竞争优势。虽然这种驱动力可以推动技术的快速发展和创新,但它也可能导致某些伦理和安全问题的忽视。尤其是在竞争激烈的市场环境中,“杀红眼”了就顾不上那么多了。

相比之下,非盈利组织如OpenAI,可能更能够在其研究和发展过程中平衡商业利益和社会责任。由于非盈利性质,这样的组织可能更专注于长期的、具有变革性的目标,而不是短期的财务回报。这可能使得它们在处理AGI带来的伦理和安全问题时,更为谨慎和全面。

此外,非盈利组织在开发AGI时可能更注重透明度和包容性。他们可能更愿意与学术界、政府和公众合作,确保AGI的发展和应用是符合伦理的,并为社会大众所接受。这种开放和合作的方式可能有助于减少对AGI潜在风险的忽视,同时促进更广泛的社会利益。

最后,让我们重温一下《OpenAI宪章》里的使命——我们的首要信托责任是对人类的信托责任。

文:一蓑烟雨 / 数据猿


32b6bd738a3462eba3aed618ee87532c.jpeg

311c854468469628eb0f33534528e1b3.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161509.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Pytorch从零开始构建WGAN

引言 在考虑生成对抗网络的文献时,Wasserstein GAN 因其与传统 GAN 相比的训练稳定性而成为关键概念之一。在本文中,我将介绍基于梯度惩罚的 WGAN 的概念。文章的结构安排如下: WGAN 背后的直觉;GAN 和 WGAN 的比较;…

selenium新版使用find_element/find_elements函数锁定元素(替换原有find_element_by_xx)

css选择器请参考:网络爬虫之css选择器 原来的find_element_by_xx都被修改为find_element(返回匹配到的第一个元素)或find_elements(返回全部的匹配元素) from selenium.webdriver.common.by import By示例程序 选择…

【Q3——30min】

1、介绍一下数据库的三大范式 第一范式(1NF):属性不可分割,即每个属性都是不可分割的原子项。(实体的属性即表中的列) 第二范式(2NF):满足第一范式;且不存在部分依赖,即非主属性必须完全依赖于主属性。(主属性即主键&a…

minio集群部署(k8s内)

一、前言 minio的部署有几种方式,分别是单节点单磁盘,单节点多磁盘,多节点多磁盘三种方式,本次部署使用多节点多磁盘的方式进行部署,minio集群多节点部署最低要求需要4个节点,集群扩容时也是要求扩容的节点…

2、数仓理论概述与相关概念

1、问:数据仓库 建设过程中 经常会遇到那些问题? 模型(逻辑)重复建设 数据不一致性 维度不一致:命名、维度属性值、维度定义 指标不一致:命名、计算口径 数据不规范(字段命名、表名、分层、主题命名规范) 2、OneData数据建设核心方…

python爬虫HMAC加密案例:某企业信息查询网站

声明: 该文章为学习使用,严禁用于商业用途和非法用途,违者后果自负,由此产生的一切后果均与作者无关 一、找出需要加密的参数 js运行 atob(‘aHR0cHM6Ly93d3cucWNjLmNvbS93ZWIvc2VhcmNoP2tleT0lRTQlQjglODclRTglQkUlQkUlRTklOUI…

飞桨——总结PPOCRLabel中遇到的坑

操作系统:win10 python环境:python3.9 paddleocr项目版本:2.7 1.报错:ModuleNotFoundError: No module named Polygon(已解决) 已解决所以没有复现报错内容 尝试方法一:直接使用pip命令安装&…

oracle rac 19.3安装补丁19.19

使用opatchauto apply DIR来进行安装 1.升级之前先备份一下GRID_HOME和ORACLE_HOME 2.现在新的opatch安装不需要先停止集群和数据库,在升级过程中,他会自动关闭和启动集群 3.先将OPatch(P6880880)包拷贝到$GRID_HOME和$ORACLE_HOM…

【Web安全】sqlmap的使用笔记及示例

【Web安全】sqlmap的使用笔记 文章目录 【Web安全】sqlmap的使用笔记1. 目标2. 脱库2.1. 脱库(补充) 3. 其他3.1. 其他(补充) 4. 绕过脚本tamper讲解 1. 目标 操作作用必要示例-u指定URL,检测注入点sqlmap -u http://…

ts实现合并数组对象中key相同的数据

背景 在平常的业务中,后端同学会返回以下类似的结构数据 // 后端返回的数据结构 [{ id: 1, product_id: 1, pid_name: "Asia", name: "HKG01" },{ id: 2, product_id: 1, pid_name: "Asia", name: "SH01" },{ id: 3, pro…

实现极坐标图表QPolarChart的角度轴范围是[0,360]时,0度在水平右侧

目录 参考角度轴范围是[0,360]时,0度在水平右侧.h.cpp 参考 Qt数据可视化(QPolarChart雷达图) 默认QPolarChart的范围是[0,360]时,0度在垂直上方 如官方例子QValueAxis角度轴范围是[-100,100] 角度轴范围是[0,360]时,0度在水平右侧 原理&am…

用eclipse搭建简单的JavaWeb环境

在 Eclipse 中搭建 JavaWeb 项目的环境涉及到配置服务器、创建项目、添加库等步骤。以下是基于 Eclipse 的 JavaWeb 项目搭建的简要步骤: 步骤: 1. 安装 Eclipse IDE for Java EE Developers 确保你已经安装了 Eclipse IDE for Java EE Developers 版…

MyBatis-Plus: 简化你的MyBatis应用

MyBatis-Plus: 简化你的MyBatis应用 在Java开发中,MyBatis一直是一个受欢迎的持久层框架,提供了灵活的数据访问方式。然而,MyBatis的使用往往涉及许多样板代码,这在一定程度上增加了开发的复杂性。这里,MyBatis-Plus&…

刷题笔记(第八天)

1. 请补全JavaScript代码,实现一个函数,要求如下: 根据输入的数字范围[start,end]和随机数个数"n"生成随机数生成的随机数存储到数组中,返回该数组返回的数组不能有相同元素 注意: 不需要考虑"n"…

【C++11】auto与decltype关键字使用详解

系列文章目录 C11新特性使用详解-持续更新 文章目录 系列文章目录前言一、auto关键字1.根据变量的初始化表达式来推导变量的类型2.const与引用 二、decltype关键字1.推断表达式的类型2.const与引用 三、总结 前言 auto和decltype是C11引入的俩个重要的新关键字,用…

简单几步,借助Aapose.Cells将 Excel XLS 转换为PPT

数据呈现是商业和学术工作的一个重要方面。通常,您需要将数据从一种格式转换为另一种格式,以创建信息丰富且具有视觉吸引力的演示文稿。当您需要在幻灯片上呈现工作表数据时,需要从 Excel XLS 转换为 PowerPoint 演示文稿。在这篇博文中&…

原理Redis-QuickList

QuickList **问题1:**ZipList虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。怎么办? 为了缓解这个问题,我们必须限制ZipList的长度和entry大小。 **问题2:**但是…

[网鼎杯 2018]Fakebook

[网鼎杯 2018]Fakebook 打开环境出现一个登录注册的页面 在登录和注册中发现 了地址栏出现变化&#xff0c;扫一波看看 看看robots.txt和flag.php 访问robots.txt看看 再访问user.php.bak <?php class UserInfo { public $name ""; public …

Head、Neck、Backbone介绍

在深度学习中&#xff0c;通常将模型分为三个部分&#xff1a;backbone、neck 和 head。 Backbone&#xff1a;backbone 是模型的主要组成部分&#xff0c;通常是一个卷积神经网络&#xff08;CNN&#xff09;或残差神经网络&#xff08;ResNet&#xff09;等。backbone 负责…

ON1 Photo RAW 2024 for Mac——专业照片编辑的终极利器

ON1 Photo RAW 2024 for Mac是一款专为Mac用户打造的照片编辑器&#xff0c;以其强大的功能和易用的操作&#xff0c;让你的照片编辑工作变得轻松愉快。 一、强大的RAW处理能力 ON1 Photo RAW 2024支持大量的RAW格式照片&#xff0c;能够让你在编辑过程中获得更多的自由度和更…