[点云分割] 条件欧氏聚类分割

介绍

条件欧氏聚类分割是一种基于欧氏距离和条件限制的点云分割方法。它通过计算点云中点与点之间的欧氏距离,并结合一定的条件限制来将点云分割成不同的区域或聚类。

在条件欧氏聚类分割中,通常会定义以下两个条件来判断两个点是否属于同一个聚类:

  1. 距离条件:两个点之间的欧氏距离是否小于设定的阈值。如果两个点之间的距离小于阈值,则认为它们是相邻的,属于同一个聚类。

  2. 条件限制:除了距离条件外,还可以根据其他的条件来限制聚类的形成。例如,可以限制点的法线方向、颜色、强度等属性的相似性,只有当这些属性满足一定的条件时,两个点才被认为是相邻的,属于同一个聚类。

条件欧氏聚类分割的步骤通常包括以下几个步骤:

  1. 初始化:设置距离阈值和其他条件限制的参数。

  2. 遍历点云:对于点云中的每个点,依次进行以下操作:

    • 计算当前点与其周围点之间的欧氏距离。

    • 根据距离条件和其他条件限制,判断当前点是否与周围点属于同一个聚类。如果是,则将它们标记为同一个聚类。

    • 继续遍历其他未被标记的点,重复上述操作,直到所有点都被遍历完。

  3. 输出聚类结果:将同一个聚类的点标记为一组,形成不同的聚类簇。

效果

代码

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/time.h>#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/conditional_euclidean_clustering.h>typedef pcl::PointXYZI PointTypeIO;
typedef pcl::PointXYZINormal PointTypeFull;bool enforceIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/){if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);elsereturn (false);}bool enforceNormalOrIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/)
{// 将点云的法线信息转换未Eigen库的Eigen:vector3f类型Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();// 判断点云A的点云B的强度差是否小于5.0if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);// 判断点云A和点云B的法线夹角的余弦值是否大于30°对应的余弦值,即判断法线相似性if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);return (false);
}bool customRegionGrowing (const PointTypeFull& point_a, const PointTypeFull& point_b, float squared_distance)
{Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();// 根据平方距离的大小,判断生长条件if (squared_distance < 10000){if (std::abs (point_a.intensity - point_b.intensity) < 8.0f)return (true);if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);}else{if (std::abs (point_a.intensity - point_b.intensity) < 3.0f)return (true);}return (false);
}int main ()
{// Data containers usedpcl::PointCloud<PointTypeIO>::Ptr cloud_in (new pcl::PointCloud<PointTypeIO>), cloud_out (new pcl::PointCloud<PointTypeIO>);pcl::PointCloud<PointTypeFull>::Ptr cloud_with_normals (new pcl::PointCloud<PointTypeFull>);pcl::IndicesClustersPtr clusters (new pcl::IndicesClusters), small_clusters (new pcl::IndicesClusters), large_clusters (new pcl::IndicesClusters);pcl::search::KdTree<PointTypeIO>::Ptr search_tree (new pcl::search::KdTree<PointTypeIO>);pcl::console::TicToc tt;// Load the input point cloudstd::cerr << "Loading...\n", tt.tic ();pcl::io::loadPCDFile ("Statues_4.pcd", *cloud_in);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_in->size () << " points\n";// Downsample the cloud using a Voxel Grid classstd::cerr << "Downsampling...\n", tt.tic ();pcl::VoxelGrid<PointTypeIO> vg;vg.setInputCloud (cloud_in);vg.setLeafSize (80.0, 80.0, 80.0);vg.setDownsampleAllData (true);vg.filter (*cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_out->size () << " points\n";// Set up a Normal Estimation class and merge data in cloud_with_normalsstd::cerr << "Computing normals...\n", tt.tic ();pcl::copyPointCloud (*cloud_out, *cloud_with_normals);pcl::NormalEstimation<PointTypeIO, PointTypeFull> ne;ne.setInputCloud (cloud_out);ne.setSearchMethod (search_tree);ne.setRadiusSearch (300.0);ne.compute (*cloud_with_normals);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Set up a Conditional Euclidean Clustering classstd::cerr << "Segmenting to clusters...\n", tt.tic ();pcl::ConditionalEuclideanClustering<PointTypeFull> cec (true);cec.setInputCloud (cloud_with_normals);cec.setConditionFunction (&customRegionGrowing);cec.setClusterTolerance (500.0);cec.setMinClusterSize (cloud_with_normals->size () / 1000);cec.setMaxClusterSize (cloud_with_normals->size () / 5);cec.segment (*clusters);cec.getRemovedClusters (small_clusters, large_clusters);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Using the intensity channel for lazy visualization of the outputfor (const auto& small_cluster : (*small_clusters))for (const auto& j : small_cluster.indices)(*cloud_out)[j].intensity = -2.0;for (const auto& large_cluster : (*large_clusters))for (const auto& j : large_cluster.indices)(*cloud_out)[j].intensity = +10.0;for (const auto& cluster : (*clusters)){int label = rand () % 8;for (const auto& j : cluster.indices)(*cloud_out)[j].intensity = label;}// Save the output point cloudstd::cerr << "Saving...\n", tt.tic ();pcl::io::savePCDFile ("output.pcd", *cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms\n";return (0);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/160059.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

利用Python进行数据分析【送书第六期:文末送书】

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…

SpringBoot——》配置logback日志文件

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

目标检测原理

一、什么是目标检测 目标检测的任务是找出图像中所有感兴趣的目标&#xff08;物体&#xff09;&#xff0c;确定他们的类别和位置&#xff0c;是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状、姿态&#xff0c;再加上光照、遮挡等因素的干扰&#xff0c;目…

LeetCode207.课程表

看完题我就想&#xff0c;这不就是进程里面的死锁问题嘛&#xff0c;进程1等进程2释放锁&#xff0c;进程2等进程3释放锁&#xff0c;进程3等进程1释放锁&#xff0c;这就造成了死锁。或者是spring中的循环依赖问题&#xff0c;BeanA的初始化需要初始化一个BeanB&#xff0c;Be…

Instant Web API .Net Core Crack

Instant Web API .Net Core 是立即构建即时数据库 Web API&#xff0c;无需编码。在几分钟内生成您的 Web API&#xff0c;以更快地构建应用程序。使用 VS 2022 和 Entity Framework Core 为任何 MS SQL 数据库生成 Web API。 新功能 - 使用 Visual Studio 2022 为 PostgreSQL …

自动化测试学习指南

软件自动化测试的学习步骤 大概步骤如下&#xff1a; 1. 做好手工测试&#xff08;了解各种测试的知识&#xff09;-> 2. 学习编程语言-> 3. 学习Web基础&#xff08;HTML,HTTP,CSS,DOM,Javascript&#xff09;或者 学习Winform -> 4. 学习自动化测试工具 ->5.…

字符串和内存函数(2)

文章目录 2.13 memcpy2.14 memmove2.15 memcmp2.16 memset 2.13 memcpy void* memcpy(void* destination, const void* source, size_t num); 函数memcpy从source的位置开始向后复制num个字节的数据到destination的内存位置。这个函数在遇到 ‘\0’ 的时候并不会停下来。如果so…

AQS和ReentrantLock还能这样理解?

1.公平锁和非公平锁 1.1含义 公平锁:在竞争环境下&#xff0c;先到临界区的线程比后到的线程一定更快地获取得到锁。非公平锁:先到临界区的线程未必比后到的线程更快地获取得到锁。 1.2如何自我实现 公平锁实现&#xff1a;可以把竞争的线程放在一个先进先出的队列上。只要…

你了解Postman 变量吗?

变量是在Postman工具中使用的一种特殊功能&#xff0c;用于存储和管理动态数据。它们可以用于在请求的不同部分、环境或集合之间共享和重复使用值。 Postman变量有以下几种类型&#xff1a; 1、环境变量&#xff08;Environment Variables&#xff09;: 环境变量是在Postman…

2023.11.22 数据仓库2-维度建模

目录 1.数仓建设方案 2.数仓结构图,项目架构图 2.1项目架构图 2.2数仓结构图 3.建模设计 4.维度建模 什么是事实表: 什么是维度表: 数据发展模式y以及对应的模型 5.数仓建设规范 数据库划分规范 表命名规范 表字段类型规范 1.数仓建设方案 ODS: 源数据层(临时存储层) 贴…

防爆智能安全帽、防爆手持终端,防爆智能矿灯守护安全,在煤矿安全生产远程可视化监管中的应用

煤矿安全新守护&#xff1a;如何通过防爆智能装备实现远程可视化监管 煤矿是国民经济的重要支柱产业&#xff0c;但长期以来&#xff0c;安全生产事故的频发一直是困扰煤矿行业发展的严峻问题。安全生产事故不仅危及矿工的生命安全&#xff0c;也对企业和地方经济造成了重大的…

csdn最新最全pytest系列——pytest-xdist插件之多进程运行测试用例|| pytest-parallel插件之多线程运行测试用例

pytest之多进程运行测试用例(pytest-xdist) 前言 平常我们功能测试用例非常多时&#xff0c;比如有1千条用例&#xff0c;假设每个用例执行需要1分钟&#xff0c;如果单个测试人员执行需要1000分钟才能跑完当项目非常紧急时&#xff0c;会需要协调多个测试资源来把任务分成两部…

HPC 集群计算类型的注意事项

HPC 集群计算类型的注意事项 HPC 工作负载在 CPU &#xff0c;内存&#xff0c;网络和存储资源需求方面有不同的要求。 您可以从以下内容开始: 核心计数每个核心的内存网络带宽和等待时间处理器时钟速度 目标是选取返回最佳性价比的计算配置。 HPC 工作负载可以与单个核心作…

Centos8上部署MySQL主从备份

虚拟机环境如下&#xff1a; Node1192.168.1.110Centos8 Node2192.168.1.111Centos8 1.在Node1和Node2上安装数据库&#xff1b; yum install -y mysql* 2.关闭防火墙服务&#xff0c;关闭开启自启&#xff1b; systemctl stop firewalld systemctl disable firewall…

2022年06月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 角色初始位置如图所示,下面哪个选项能让角色移到舞台的左下角? A: B: C: D: </

VirtualBox配置共享文件夹,如果你一直安装增强功能失败,又没有尝试过改内核版本。。。

1 背景 想设置电脑本地和virtualbox虚拟机之间的共享文件夹&#xff0c;这样在电脑本地对共享文件的修改&#xff0c;就可以在虚拟机中被感知。 如果想配置共享文件夹&#xff0c;前提是必须安装virtualbox的增强功能。 我的虚拟机是7.0.10版本 安装的centOS8.5 可以看我之前的…

内网穿透隐秘隧道搭建

别低头&#xff0c;皇冠会掉&#xff1b;别流泪&#xff0c;贱人会笑。 本文首发于先知社区&#xff0c;原创作者即是本人 0x00 前言 构建内网隐蔽通道&#xff0c;从而突破各种安全策略限制&#xff0c;实现对目标服务器的完美控制。 当我们从外网成功获得攻击点的时候&…

计算机基础知识56

choices参数的使用 # 应用场景&#xff1a; 学历&#xff1a;小学、初中、高中、本科、硕士、博士、1 2 3 4 5 6 客户来源: 微信渠道、广告、介绍、QQ、等等 性别&#xff1a;男、女、未知 # 对于以上可能被我们列举完的字段我们一般都是选择使用…

HubSpot驱动业务增长:客户拓展的完美引擎!

随着数字化时代的来临&#xff0c;企业面临着前所未有的挑战&#xff0c;尤其在拓展客户方面&#xff0c;传统的方法已经难以适应新的市场环境。在这个背景下&#xff0c;数字化时代的客户拓展变得更为复杂&#xff0c;企业需要更智能、更综合的解决方案来脱颖而出。 HubSpot作…

虚拟机VMware+Ubuntu系统的自定义安装教程(详细图文教程)

VMware可以帮助你在一个操作系统的环境下安装和运行另一个操作系统&#xff0c;从而提高IT效率&#xff0c;降低运维成本&#xff0c;加快工作负载部署速度&#xff0c;提高应用性能&#xff0c;提高服务器可用性&#xff0c;消除服务器数量剧增情况和复杂性。 目录 一、VMwar…