OFI libfabric原理及应用解析

Agenda 目录/议题

  • 编译通信软件
  • 硬件和软件带来的挑战
  • 为什么需要libfabric
  • libfabric架构
  • API分组
  • socket应用 VS libfabric应用区别
  • GPU数据传输示例

编译通信软件

  • 可靠面向连接的TCP和无连接的数据报UDP协议
  • 高性能计算HPC或人工智能AI

软硬件复杂性带来的挑战

  • 上千个节点的集群, 不同的网络类型(以太网, IB, 光纤等), 熊猫博士提到的CPU/GPU/XPU/IPU等等
  • xelink, nvlink, gpu
  • 软件库, 如nccl,intel mpi等
  • 所以咱们需要一个通用的通信库来桥接这些复杂的软硬件资源

libfabric来解决上面的问题

  • 统一API, 让程序员更轻松
  • 高性能和高可扩展性
  • 核心组件: 众多网卡提供者的库, 核心服务, 测试程序等

为什么需要libfabric

  • 承上启下, 桥接底层复杂多样的网络(socket, rdma, gpu, 共享内存等)和上层MPI, CCL, 共享内存等应用

socket编程与libfabric编程对比

  • 语义类似, 如获取信息, bind, connect等, 但是libfabric底层支持多种网络类型

支持GPU通信

  • gpu通信示例, 支持intel gpu, dpu, 或者其他供应商

架构与四种服务

  • 控制类: 发现底层设备, 属性, 能力等
  • 通信接口: 建立连接, 初始资源等
  • 数据传输: 发送和接收数据
  • 完成服务: 报告发送或接收状态

libfabric API分组

  • 整合底层提供者和上层开发者使用统一的API编程, 就像熊猫博士说的那样, 方便了提供者更方便的提供插件, 也方便了上层应用开发者

tcp socket 代码截图

socket收发数据示例

server端启动:./example_socket客户端连接和发送:./example_socket 192.168.5.6Hello server this is client.

example_socket.c 源码

#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>char *dst_addr = NULL;int main(int argc, char *argv[])
{int socket_desc, client_sock, client_size;struct sockaddr_in server_addr, client_addr;char server_message[2000], client_message[2000];dst_addr = inet_addr(argv[1]);// Clean buffers:memset(server_message, '\0', sizeof(server_message));memset(client_message, '\0', sizeof(client_message));// Create socket:socket_desc = socket(AF_INET, SOCK_STREAM, 0);if(socket_desc < 0){printf("Error while creating socket\n");return -1;}printf("Socket created successfully\n");// Set port and IP:server_addr.sin_family = AF_INET;server_addr.sin_port = "43192";server_addr.sin_addr.s_addr = inet_addr("127.0.0.1");if (!dst_addr) {// Bind to the set port and IP:if(bind(socket_desc, (struct sockaddr*)&server_addr, sizeof(server_addr))<0){printf("Couldn't bind to the port\n");return -1;}printf("Binding complete\n");// Listen for clients:if(listen(socket_desc, 1) < 0){printf("Error while listening\n");return -1;}printf("Listening for incoming connections...\n");// Accept an incoming connection:client_size = sizeof(client_addr);client_sock = accept(socket_desc, (struct sockaddr*)&client_addr, &client_size);if (client_sock < 0){printf("Can't accept\n");return -1;}printf("Client connected at IP: %s and port: %i\n", inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port));// Receive client's message:if (recv(client_sock, client_message, sizeof(client_message), 0) < 0){printf("Couldn't receive\n");return -1;}printf("Msg from client: %s\n", client_message);// Respond to client:strcpy(server_message, "This is the server's message.");if (send(client_sock, server_message, strlen(server_message), 0) < 0){printf("Can't send\n");return -1;}}if (dst_addr) {// Send connection request to server:if(connect(socket_desc, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0){printf("Unable to connect\n");return -1;}printf("Connected with server successfully\n");// Get input from the user:printf("Enter message: ");gets(client_message);// Send the message to server:if(send(socket_desc, client_message, strlen(client_message), 0) < 0){printf("Unable to send message\n");return -1;}// Receive the server's response:if(recv(socket_desc, server_message, sizeof(server_message), 0) < 0){printf("Error while receiving server's msg\n");return -1;}printf("Server's response: %s\n",server_message);}// Close the client socket:close(client_sock);// Closing the server socket:close(socket_desc);return 0;
}

libfabric收发数据示例截图

服务端启动: ./example_msg客户端连接发送数据: ./example_msg 192.168.5.6
客户端连接发送数据: ./example_msg 192.168.5.6

参考代码

https://github.com/ssbandjl/libfabric/blob/main/fabtests/functional/example_msg.c
/*** This software is available to you under the BSD license* below:**     Redistribution and use in source and binary forms, with or*     without modification, are permitted provided that the following*     conditions are met:**      - Redistributions of source code must retain the above*        copyright notice, this list of conditions and the following*        disclaimer.**      - Redistributions in binary form must reproduce the above*        copyright notice, this list of conditions and the following*        disclaimer in the documentation and/or other materials*        provided with the distribution.** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE* SOFTWARE.*/#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <rdma/fabric.h>
#include <rdma/fi_domain.h>
#include <rdma/fi_endpoint.h>
#include <rdma/fi_cm.h>
#include <shared.h>//Build with
//gcc -o example_msg example_msg.c -L<path to libfabric lib> -I<path to libfabric include> -lfabric
//gcc -o example_msg example_msg.c -L/home/xb/project/libfabric/libfabric/build/lib -I/home/xb/project/libfabric/libfabric/build/include -I/home/xb/project/libfabric/libfabric/build/include -lfabric#define BUF_SIZE 64char *dst_addr = NULL;
char *port = "9228";
struct fi_info *hints, *info, *fi_pep;
struct fid_fabric *fabric = NULL;
struct fid_domain *domain = NULL;
struct fid_ep *ep = NULL;
struct fid_pep *pep = NULL;
struct fid_cq *cq = NULL;
struct fid_eq *eq = NULL;
struct fi_cq_attr cq_attr = {0};
struct fi_eq_attr eq_attr = {.wait_obj = FI_WAIT_UNSPEC
};
//const struct sockaddr_in *sin;
char str_addr[INET_ADDRSTRLEN];
int ret;
char buffer[BUF_SIZE];
fi_addr_t fi_addr = FI_ADDR_UNSPEC;
struct fi_eq_cm_entry entry;
uint32_t event;
ssize_t rd;/* Initializes all basic OFI resources to allow for a server/client to exchange a message */
static int start_client(void)
{ret = fi_getinfo(FI_VERSION(1,9), dst_addr, port, dst_addr ? 0 : FI_SOURCE,hints, &info);if (ret) {printf("fi_getinfo: %d\n", ret);return ret;}ret = fi_fabric(info->fabric_attr, &fabric, NULL);if (ret) {printf("fi_fabric: %d\n", ret);return ret;}ret = fi_eq_open(fabric, &eq_attr, &eq, NULL);if (ret) {printf("fi_eq_open: %d\n", ret);return ret;}ret = fi_domain(fabric, info, &domain, NULL);if (ret) {printf("fi_domain: %d\n", ret);return ret;}/* Initialize our completion queue. Completion queues are used to report events associated* with data transfers. In this example, we use one CQ that tracks sends and receives, but* often times there will be separate CQs for sends and receives.*/cq_attr.size = 128;cq_attr.format = FI_CQ_FORMAT_MSG;ret = fi_cq_open(domain, &cq_attr, &cq, NULL);if (ret) {printf("fi_cq_open error (%d)\n", ret);return ret;}/* Bind our CQ to our endpoint to track any sends and receives that come in or out on that endpoint.* A CQ can be bound to multiple endpoints but one EP can only have one send CQ and one receive CQ* (which can be the same CQ).*/ret = fi_endpoint(domain, info, &ep, NULL);if (ret) {printf("fi_endpoint: %d\n", ret);return ret;}ret = fi_ep_bind(ep, &cq->fid, FI_SEND | FI_RECV);if (ret) {printf("fi_ep_bind cq error (%d)\n", ret);return ret;}ret = fi_ep_bind((ep), &(eq)->fid, 0);if (ret) {printf("fi_ep_bind: %d\n", ret);return ret;}ret = fi_enable(ep);if (ret) {printf("fi_enable: %d\n", ret);return ret;}ret = fi_connect(ep, info->dest_addr, NULL, 0);if (ret) {printf("fi_connect: %d\n", ret);return ret;}rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);if (rd != sizeof(entry)) {ret = (int) rd;printf("fi_eq_sread: %d\n", ret);return ret;}return 0;
}static int start_server(void)
{const struct sockaddr_in *sin;/* The first OFI call to happen for initialization is fi_getinfo which queries libfabric* and returns any appropriate providers that fulfill the hints requirements. Any applicable* providers will be returned as a list of fi_info structs (&info). Any info can be selected.* In this test we select the first fi_info struct. Assuming all hints were set appropriately,* the first fi_info should be most appropriate.* The flag FI_SOURCE is set for the server to indicate that the address/port refer to source* information. This is not set for the client because the fields refer to the server, not* the caller (client). *//* 初始化时发生的第一个 OFI 调用是 fi_getinfo,它查询 libfabric 并返回满足提示要求的任何适当的提供程序。 任何适用的提供程序都将作为 fi_info 结构 (&info) 列表返回。 可以选择任何信息。 在此测试中,我们选择第一个 fi_info 结构。 假设所有提示均已正确设置,第一个 fi_info 应该是最合适的。 为服务器设置标志FI_SOURCE以指示地址/端口引用源信息。 这不是为客户端设置的,因为这些字段引用服务器,而不是调用者(客户端) */ret = fi_getinfo(FI_VERSION(1,9), dst_addr, port, dst_addr ? 0 : FI_SOURCE,hints, &fi_pep);if (ret) {printf("fi_getinfo error (%d)\n", ret);return ret;}/* Initialize our fabric. The fabric network represents a collection of hardware and software* resources that access a single physical or virtual network. All network ports on a system* that can communicate with each other through their attached networks belong to the same fabric.*/ret = fi_fabric(fi_pep->fabric_attr, &fabric, NULL); // 打开fabric, 初始化任何资源前需要打开fabricif (ret) {printf("fi_fabric error (%d)\n", ret);return ret;}/* Initialize our endpoint. Endpoints are transport level communication portals which are used to* initiate and drive communication. There are three main types of endpoints:* FI_EP_MSG - connected, reliable* FI_EP_RDM - unconnected, reliable* FI_EP_DGRAM - unconnected, unreliable* The type of endpoint will be requested in hints/fi_getinfo. Different providers support different* types of endpoints. TCP supports only FI_EP_MSG but when used with RxM, can support FI_EP_RDM.* In this application, we requested TCP and FI_EP_MSG.*/ret = fi_eq_open(fabric, &eq_attr, &eq, NULL); // 打开事件队列EQ, 一般用于建连, 收发数据产生的事件if (ret) {printf("fi_eq_open: %d\n", ret);return ret;}ret = fi_passive_ep(fabric, fi_pep, &pep, NULL); // 打开被动端点, 常用与服务端监听端口, 支持多个客户端domain连接进来if (ret) {printf("fi_passive_ep: %d\n", ret);return ret;}ret = fi_pep_bind(pep, &eq->fid, 0); // 为端点绑定事件队列if (ret) {printf("fi_pep_bind %d", ret);return ret;}ret = fi_listen(pep); // 监听端点, 等待客户端连接请求if (ret) {printf("fi_listen %d", ret);return ret;}return 0;
}static int complete_connection(void)
{rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0); // 等待读取客户端触发的服务端事件, 读取事件, 推动进展(驱动程序运转)if (rd != sizeof entry) {ret = (int) rd;printf("fi_eq_sread: %d", ret);if (ret)goto err;}ret = fi_domain(fabric, info, &domain, NULL); // domain域用于将资源分组, 可基于域来做管理if (ret) {printf("fi_domain: %d\n", ret);return ret;}ret = fi_domain_bind(domain, &eq->fid, 0);if (ret) {printf("fi_domain_bind: %d\n", ret);return ret;}/* * Initialize our completion queue. Completion queues are used to report events associated* with data transfers. In this example, we use one CQ that tracks sends and receives, but* often times there will be separate CQs for sends and receives.*/cq_attr.size = 128;cq_attr.format = FI_CQ_FORMAT_MSG;ret = fi_cq_open(domain, &cq_attr, &cq, NULL);if (ret) {printf("fi_cq_open error (%d)\n", ret);return ret;}/* Bind our CQ to our endpoint to track any sends and receives that * come in or out on that endpoint. A CQ can be bound to multiple* endpoints but one EP can only have one send CQ and one receive CQ* (which can be the same CQ).*/ret = fi_endpoint(domain, info, &ep, NULL); // 用于客户端, 主动端点, 发起建连if (ret) {printf("fi_endpoint: %d\n", ret);return ret;}ret = fi_ep_bind(ep, &cq->fid, FI_SEND | FI_RECV);if (ret) {printf("fi_ep_bind cq error (%d)\n", ret);return ret;}ret = fi_ep_bind((ep), &(eq)->fid, 0);if (ret) {printf("fi_ep_bind: %d\n", ret);return ret;}ret = fi_enable(ep);if (ret) {printf("fi_enable: %d", ret);return ret;}ret = fi_accept(ep, NULL, 0);if (ret) {printf("fi_accept: %d\n", ret);return ret;}rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);if (rd != sizeof(entry)) {ret = (int) rd;printf("fi_eq_read: %d\n", ret);return ret;}return 0;err:if (info)fi_reject(pep, info->handle, NULL, 0);return ret;}static void cleanup(void)
{int ret;/* All OFI resources are cleaned up using the same fi_close(fid) call. */if (ep) {ret = fi_close(&ep->fid);if (ret)printf("warning: error closing EP (%d)\n", ret);}if (pep) {ret = fi_close(&pep->fid);if (ret)printf("warning: error closing PEP (%d)\n", ret);}ret = fi_close(&cq->fid);if (ret)printf("warning: error closing CQ (%d)\n", ret);ret = fi_close(&domain->fid);if (ret)printf("warning: error closing domain (%d)\n", ret);ret = fi_close(&eq->fid);if (ret)printf("warning: error closing EQ (%d)\n", ret);ret = fi_close(&fabric->fid);if (ret)printf("warning: error closing fabric (%d)\n", ret);if (info)fi_freeinfo(info);if (fi_pep)fi_freeinfo(fi_pep);
}/* Post a receive buffer. This call does not ensure a message has been received, just* that a buffer has been passed to OFI for the next message the provider receives.* Receives may be directed or undirected using the address parameter. Here, we* pass in the fi_addr but note that the server has not inserted the client's* address into its AV, so the address is still FI_ADDR_UNSPEC, indicating that* this buffer may receive incoming data from any address. An application may* set this to a real fi_addr if the buffer should only receive data from a certain* peer.* When posting a buffer, if the provider is not ready to process messages (because* of connection initialization for example), it may return -FI_EAGAIN. This does* not indicate an error, but rather that the application should try again later.* This is why we almost always wrap sends and receives in a do/while. Some providers* may need the application to drive progress in order to get out of the -FI_EAGAIN* loop. To drive progress, the application needs to call fi_cq_read (not necessarily* reading any completion entries).*/
static int post_recv(void)
{int ret;do {ret = fi_recv(ep, buffer, BUF_SIZE, NULL, fi_addr, NULL);if (ret && ret != -FI_EAGAIN) {printf("error posting recv buffer (%d\n", ret);return ret;}if (ret == -FI_EAGAIN)(void) fi_cq_read(cq, NULL, 0);} while (ret);return 0;
}/* Post a send buffer. This call does not ensure a message has been sent, just that* a buffer has been submitted to OFI to be sent. Unlike a receive buffer, a send* needs a valid fi_addr as input to tell the provider where to send the message.* Similar to the receive buffer posting porcess, when posting a send buffer, if the* provider is not ready to process messages, it may return -FI_EAGAIN. This does not* indicate an error, but rather that the application should try again later. Just like* the receive, we drive progress with fi_cq_read if this is the case.*/
static int post_send(void)
{char *msg = "Hello, server! I am the client you've been waiting for!\0";int ret;(void) snprintf(buffer, BUF_SIZE, "%s", msg);do {ret = fi_send(ep, buffer, BUF_SIZE, NULL, fi_addr, NULL);if (ret && ret != -FI_EAGAIN) {printf("error posting send buffer (%d)\n", ret);return ret;}if (ret == -FI_EAGAIN)(void) fi_cq_read(cq, NULL, 0);} while (ret);return 0;
}/* Wait for the message to be sent/received using the CQ. fi_cq_read not only drives progress* but also returns any completed events to notify the application that it can reuse* the send/recv buffer. The returned completion entry will have fields set to let the application* know what operation completed. Not all fields will be valid. The fields set will be indicated* by the cq format (when creating the CQ). In this example, we use FI_CQ_FORMAT_MSG in order to* use the flags field.*/
static int wait_cq(void)
{struct fi_cq_err_entry comp;int ret;do {ret = fi_cq_read(cq, &comp, 1);if (ret < 0 && ret != -FI_EAGAIN) {printf("error reading cq (%d)\n", ret);return ret;}} while (ret != 1);if (comp.flags & FI_RECV)printf("I received a message!\n");else if (comp.flags & FI_SEND)printf("My message got sent!\n");return 0;
}static int run(void)
{int ret;if (dst_addr) {printf("Client: send to server %s\n", dst_addr);ret = post_send();if (ret)return ret;ret = wait_cq();if (ret)return ret;} else {printf("Server: post buffer and wait for message from client\n");ret = post_recv();if (ret)return ret;ret = wait_cq();if (ret)return ret;printf("This is the message I received: %s\n", buffer);}return 1;
}int main(int argc, char **argv)
{int ret;/* Hints are used to request support for specific features from a provider */hints = fi_allocinfo(); // if (!hints)return EXIT_FAILURE;/* Server run with no args, client has server's address as an argument */dst_addr = argv[1];//Set anything in hints that the application needs/* Request FI_EP_MSG (reliable datagram) endpoint which will allow us* to reliably send messages to peers without having to listen/connect/accept. */hints->ep_attr->type = FI_EP_MSG; // 可靠数据报端点, 类似socket, 但无须执行listen/connect/accept/* Request basic messaging capabilities from the provider (no tag matching,* no RMA, no atomic operations) */hints->caps = FI_MSG;/* Specifically request the tcp provider for the simple test */// hints->fabric_attr->prov_name = "tcp"; // 类似socket的, 面向连接的消息类型端点hints->fabric_attr->prov_name = "ofi_rxm;verbs";/* Specifically request SOCKADDR_IN address format to simplify addressing for test */hints->addr_format = FI_SOCKADDR_IN;/* Default to FI_DELIVERY_COMPLETE which will make sure completions do not get generated* until our message arrives at the destination. Otherwise, the client might get a completion* and exit before the server receives the message. This is to make the test simpler *//* 默认为 FI_DELIVERY_COMPLETE,这将确保在我们的消息到达目的地之前不会生成完成(等待)。 否则,客户端可能会在服务器收到消息之前完成并退出。 这是为了让测试更简单 */hints->tx_attr->op_flags = FI_DELIVERY_COMPLETE;//Done setting hintsif (!dst_addr) {ret = start_server();if (ret) {goto out;return ret;}}ret = dst_addr ? start_client() : complete_connection();if (ret) {goto out;return ret;}ret = run();
out:cleanup();return ret;
}

socket vs libfabric消息类型示意图(两者都可完成建连和消息收发)

GPU数据传输示例

左边是内存直接访问DMA ibv verbs示例, 右边是DMA libfabric统一API的语义的示例

verbs
服务端: ./rdmabw-xe -m host
客户端: ./rdmabw-xe -m host -S 1 -t write 192.168.5.6  #都是用主机内存, 完成1字节的远程内存写操作

主机对主机GPU libfabric 内存直接访问DMA示例

libfabric, host -> host DMA
服务端: ./fi-rdmabw-xe -m host
客户端: ./fi-rdmabw-xe -m host -S 1 -t write 192.168.5.6  #都是用主机内存, 完成1字节的远程内存写操作
verbs 代码相对位置: fabtests/component/dmabuf-rdma/rdmabw-xe.c

主机发给GPU设备 内存直接访问DMA libfabric示例

libfabric GPU设备 -> host
服务端: ./fi-rdmabw-xe -m device #使用GPU设备的内存
客户端: ./fi-rdmabw-xe -m host -S 1 -t write 192.168.5.6  #用主机内存, 完成1字节的远程内存写操作
libfabric 代码相对位置: fabtests/component/dmabuf-rdma/fi-rdmabw-xe.c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/157511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

8.Gin 自定义控制器

8.Gin 自定义控制器 前言 在上一篇路由文件抽离的过程中&#xff0c;我们发现接口的业务逻辑还写在路由配置中&#xff0c;如下&#xff1a; 1696385129126 但是如果业务逻辑比较多&#xff0c;如果写在路由之中&#xff0c;肯定不合适。 我们可以将业务逻辑抽离&#xff0c;单…

使用Pytorch实现linear_regression

使用Pytorch实现线性回归 # import necessary packages import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt# Set necessary Hyper-parameters. input_size 1 output_size 1 num_epochs 60 learning_rate 0.001# Define a Toy datas…

操作系统 应用题 例题+参考答案(考研真题)

1.&#xff08;考研真题&#xff09;一个多道批处理系统中仅有P1和P2两个作业&#xff0c;P2比P1晚5ms到达&#xff0c;它们的计算和I/O操作顺序如下。 P1&#xff1a;计算60ms&#xff0c;I/O 80ms&#xff0c;计算20ms。 P2&#xff1a;计算120ms&#xff0c;I/O 40ms&…

<Linux>权限管理|权限分类|权限设置|权限掩码|粘滞位

文章目录 Linux权限的概念Linux权限管理a. 文件访问者的分类b. 文件类型和访问权限c. 文件权限表示方法d. 文件权限的设置权限掩码file指令粘滞位 权限总结权限作业 Linux权限的概念 Linux下有两种用户&#xff1a;超级用户(root)和普通用户。 超级用户&#xff1a;可以在Lin…

学生党的福利!移动云重磅升级存储产品体系

如今&#xff0c;随着科学技术不断发展进步&#xff0c;电子产品的生产技术也变得越来越成熟。一方面&#xff0c;电子产品的功能越来越强大&#xff0c;质量越来越可靠&#xff1b;另一方面&#xff0c;产品价格越来越便宜&#xff0c;在人们生活中越来越普及。大学生群体可以…

基于纳什博弈的多微网主体电热双层共享策略(matlab代码)

目录 ​1 主要内容 2 部分代码 3 程序结果 4 下载链接 ​1 主要内容 该程序复现《Multi-Micro-Grid Main Body Electric Heating Double-Layer Sharing Strategy Based on Nash Game》模型&#xff0c;主要做的是构建基于纳什博弈的多微网主体电热双层共享模型&#xff0c;…

java项目之木里风景文化管理平台(ssm+vue)

项目简介 木里风景文化管理平台实现了以下功能&#xff1a; 前台功能&#xff1a;用户进入系统可以实现首页&#xff0c;旅游公告&#xff0c;景区&#xff0c;景区商品&#xff0c;景区美食&#xff0c;旅游交通工具&#xff0c;红黑榜&#xff0c;个人中心&#xff0c;后台…

squid代理服务器(传统代理、透明代理、反向代理、ACL、日志分析)

一、Squid 代理服务器 &#xff08;一&#xff09;代理的工作机制 1、代替客户机向网站请求数据&#xff0c;从而可以隐藏用户的真实IP地址。 2、将获得的网页数据&#xff08;静态 Web 元素&#xff09;保存到缓存中并发送给客户机&#xff0c;以便下次请求相同的数据时快速…

Stable Diffusion XL网络结构-超详细原创

强烈推荐先看本人的这篇 Stable Diffusion1.5网络结构-超详细原创-CSDN博客 1 Unet 1.1 详细整体结构 1.2 缩小版整体结构 以生成图像1024x1024为例&#xff0c;与SD1.5的3个CrossAttnDownBlock2D和CrossAttnUpBlock2D相比&#xff0c;SDXL只有2个&#xff0c;但SDXL的Cros…

Rust语言精讲:数据类型全解析

大家好&#xff01;我是lincyang。 今天&#xff0c;我们将深入探讨Rust语言中的数据类型&#xff0c;这是理解和掌握Rust的基础。 Rust语言数据类型概览 Rust是静态类型语言&#xff0c;所有变量类型在编译时确定。Rust的数据类型分为两类&#xff1a;标量类型和复合类型。…

动态神经网络时间序列预测

大家好&#xff0c;我是带我去滑雪&#xff01; 神经网络投照是否存在反锁与记忆可以分为静态神经网络与动态神经网络。动态神经网络是指神经网络带有反做与记忆功能&#xff0c;无论是局部反馈还是全局反锁。通过反馈与记忆&#xff0c;神经网络能将前一时刻的数据保留&#x…

【ARM AMBA AXI 入门 15 -- AXI-Lite 详细介绍】

请阅读【ARM AMBA AXI 总线 文章专栏导读】 文章目录 AXI LiteAXI-Full 介绍AXI Stream 介绍AXI Lite 介绍AXI Full 与 AIX Lite 差异总结AXI Lite AMBA AXI4 规范中包含三种不同的协议接口,分别是: AXI4-FullAXI4-LiteAXI4-Stream 上图中的 AXI FULL 和 AIX-Lite 我们都把…

【GUI】-- 12 贪吃蛇小游戏之让小蛇动起来

GUI编程 04 贪吃蛇小游戏 4.3 第三步&#xff1a;让小蛇动起来(键盘控制) 首先&#xff0c;在构造器中要获取焦点事件、键盘监听事件并加入定时器(定时器定义需要实现ActionListener接口并重写actionPerformed方法)&#xff1a; //构造器public GamePanel() {init();this.s…

jbase仪器接口设计

jbase的计划有借助虚拟M来实现连仪器&#xff0c;之前陆续写了些TCP逻辑&#xff0c;今天终于整理完成了仪器设计。首先用java的cs程序测试TCP的服务和客户端。 javafx的示例加强 package sample;import javafx.application.Application; import javafx.event.EventHandler; …

Web 自动化神器 TestCafe—页面基本操作篇

前 言 Testcafe是基于node.js的框架&#xff0c;以操作简洁著称&#xff0c;是web自动化的神器 今天主要给大家介绍一下testcafe这个框架和页面元素交互的方法。 一、互动要求 使用 TestCafe 与元素进行交互操作&#xff0c;元素需满足以下条件&#xff1a;☟ 元素在 body 页…

专访特斯拉工程师杨硕:跟着机器人上天入地、探索地外行星丨智源独家

导读 十几岁时&#xff0c;他痴迷《终结者》&#xff0c;曾在百科全书中窥见卡内基梅隆大学机械臂的介绍&#xff0c;从而得知了研究机器人「圣地」的存在。 在CMU&#xff0c;他深耕足式机器人感知定位算法&#xff0c;期待未来涉足太空&#xff0c;走上火星。 在大疆&#xf…

瑞格心理咨询系统设置多个管理员的操作方法

使用瑞格心理咨询系统&#xff0c;需要设置多个admin权限的管理员账号来管理&#xff0c;咨询厂家答复只能有1个管理员&#xff0c;个人觉得不可能&#xff0c;于是开始折腾。 解决办法&#xff1a; 在没有数据字典的情况下&#xff0c; 通过遍历数据库&#xff0c;发现用户信…

『 Linux 』使用fork函数创建进程与进程状态的查看

文章目录 &#x1f5a5;️ 前言 &#x1f5a5;️&#x1f5a5;️ 通过系统调用获取进程标识符 &#x1f5a5;️&#x1f4bb; 进程标识符PID&#x1f4bb; 父进程标识符PPID &#x1f5a5;️ 通过系统调用创建子进程 fork() &#x1f5a5;️&#x1f4bb; 那么为什么在fork()函…

线程池简介及其简单实现

如果需要频繁的创建销毁线程, 就需要想办法降低创建和销毁的开销, 而线程池就是一个很好的选择: 提前创建好一些线程, 等到需要使用线程的时候, 直接从池子里拿一个就好了, 当不再使用该线程时, 就放回到池子里. 那么此时就从 创建/销毁线程 -> 池子里取线程/将线程还到池子…

构建智能医患沟通:陪诊小程序开发实战

在医疗科技的浪潮中&#xff0c;陪诊小程序的开发成为改善医患沟通的创新途径之一。本文将介绍如何使用Node.js和Express框架构建一个简单而强大的陪诊小程序&#xff0c;实现患者导诊和医生咨询功能。 1. 安装Node.js和Express 首先确保已安装Node.js&#xff0c;然后使用以…