Redis(主从复制、哨兵模式、集群)概述及部署

文章目录

  • 一、Redis模式
  • 二、Redis 持久化
    • 1.Redis 提供两种方式进行持久化:
    • 2.RDB 持久化
      • 2.1 触发条件
      • 2.2 执行流程
      • 2.3 启动时加载
    • 3.AOF持久化
      • 3.1 执行流程
        • 3.1.1 命令追加(append)
        • 3.1.2 文件写入(write)和文件同步(sync)
        • 3.1.3 文件重写(rewrite)
      • 3.2 文件重写的触发,分为手动触发和自动触发:
      • 3.3 文件重写的流程如下:
      • 3.4 启动时加载
    • 4.RDB和AOF的优缺点
      • 4.1 RDB持久化
      • 4.2 AOF持久化
    • 5.Redis 性能管理
      • 5.1 查看Redis内存使用
      • 5.2内存碎片率
      • 5.3 内存使用率
      • 5.4 内回收key
  • 三、redis主从复制
    • 1.Redis主从复制的概念
    • 2.Redis主从复制的作用
      • 2.1 Redis主从复制的流程
  • 四、redis哨兵模式
    • 4.1 哨兵 模式原理:
    • 4.2 哨兵模式的作用
    • 4.3 故障转移机制
  • 五、Redis 群集模式
    • 5.1 集群的作用
    • 5.2 Redis集群的数据分片
  • 总结


一、Redis模式

Redis有三种模式:分别是主从同步/复制、哨兵模式、Cluster

主从复制:主从复制是高可用Redis的基础,哨兵和群集都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单故障恢复。

缺陷:故障恢复无法自动化,写操作无法负载均衡,存储能力受到单机的限制。

哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。

缺陷:写操作无法负载均衡,存储能力受到单机的限制,哨兵无法对从节点进行自动故障转移;在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、Redis 持久化

持久化的功能

redis是内存数据库,数据都是存储在内存中,为了避免服务器服务器断电等导致redis进程异常退出后数据的永久丢失,需要定期将redis中的数据以某种形式(数据或命令)从内存保存到硬盘;

当下次redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

1.Redis 提供两种方式进行持久化:

●RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。 ●AOF 持久化(append only file):原理是将Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地

2.RDB 持久化

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

2.1 触发条件

RDB持久化的触发分为手动触发和自动触发两种。

(1)手动触发
save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。(2)自动触发
在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes##其他自动触发机制##
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。

2.2 执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑: 两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息

在这里插入图片描述

2.3 启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时, 才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。

Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

3.AOF持久化

RDB持久化 是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录;
当Redis重启时 再次执行AOF文件中的命令来恢复数据。

1. 开启AOF
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes/etc/init.d/redis_6379 restart

3.1 执行流程

AOF的执行流程包括:

●命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
●文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
●文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

3.1.1 命令追加(append)

Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。

命令追加的格式是: Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

3.1.2 文件写入(write)和文件同步(sync)

Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:

为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:

vim /etc/redis/6379.conf
–729–
● appendfsync always[一直触发]: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。● appendfsync no【不触发】: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。● appendfsync everysec【每秒触发】: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

3.1.3 文件重写(rewrite)

随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,

AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是: 对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

文件重写之所以能够压缩AOF文件,原因在于:

●过期的数据不再写入文件
●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、
有些数据被删除了(set myset v1, del myset)等。
●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, 
sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

3.2 文件重写的触发,分为手动触发和自动触发:

手动触发: 直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
自动触发: 通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf
--729--
●auto-aof-rewrite-percentage 100	:当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF	

3.3 文件重写的流程如下:

在这里插入图片描述

(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,
如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”
信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,
并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。
由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,
防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,
Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,
具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,
这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。

缩减版AOF文件重写流程:

1、Redis父进程先会判断是否有其他子进程在运行,如果是bdrewriteaof的会直接返回,如果是bgsave的会等它执行完成后在执行;
2、如果没有其他子进程,父进程会fork子进程,fork过程中父进程阻塞,子进程创建好后,会信息通知;父进程继续响应其他命令。
3.1、Redis会将写入命令存在缓存区里,根据fsync策略同步到硬盘里,fork后的数据也会写入到aof文件中;
3.2、父进程完成后的命令同时记录到aof_buf和aof_rewarite_buf当中;
4、子进程根据重写规则生成新的AOF文件;
5.1、子进程完成新AOF文件的生成后,向父进程发送信号,父进程更新统计信息;
5.2、fork后的数据会写入到新的AOF文件中;
5.3、新的AOF文件会替换旧的AOF文件;完成AOF重写;

3.4 启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

4.RDB和AOF的优缺点

4.1 RDB持久化

优点: RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。
当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点: RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。
此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。

对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,
另一方面,子进程向硬盘写数据也会带来IO压力。

4.2 AOF持久化

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。

AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。

相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。

5.Redis 性能管理

5.1 查看Redis内存使用

192.168.9.236:7001> info memory

5.2内存碎片率

操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。 内存值used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。

除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销,内存碎片 是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)。

举例来说: Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据,该操作就会导致内存碎片的产生

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:

●内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
●内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。
需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,
再重启服务器。
●内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。
需要增加可用物理内存或减少 Redis 内存占用。

5.3 内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

避免内存交换发生的方法:

●针对缓存数据大小选择安装 Redis 实例
●尽可能的使用Hash数据结构存储
●设置key的过期时间

5.4 内回收key

内存清理策略,保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,
针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)

三、redis主从复制

1.Redis主从复制的概念

**主从复制,是指:**将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2.Redis主从复制的作用

数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.1 Redis主从复制的流程

1、若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。

2、无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。

3、后台进程完成缓存操作之后,Maste机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。

4、Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

在这里插入图片描述
主从复制、SYNC同步:

1、Redis从服务器向主服务器发送sync同步数据请求;
2、主redis会fork一个子进程,然后产生RDB文件(完全备份)的过程;
2.1客户端在持续写入redis;
3、RDB文件持久化完成后,主redis会持续将RDB文件和缓存起来的命令推送给从服务器;
4、复制、推送完之后,主redis会持续同步操作命令,利用AOF持久化(增量备份)功能;
5、在下一台从Redis接入主从复制的集群之前,会持续利用AOF的方式同步数据给从redis。

四、redis哨兵模式

主从切换技术的方法是: 当服务器宕机后,需要手动一台从机换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务器不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能: 在主从复制的基础上,哨兵引入了主节点的自动故障转移

4.1 哨兵 模式原理:

哨兵(sentinel): 是一个分布式系统,用于 对主从结构中的每台服务器进行监控,当出现 故障时,通过投票机制选择新的master并将所有slave连接到新的master。所以整个运行哨兵的集群的数量不得少于三个节点。【哨兵必须是奇数】

4.2 哨兵模式的作用

监控: 哨兵会不断地检测主节点和从节点是否运行正常。

自动故障转移: 当主节点不能正常工作时,哨兵会开始自动故障转移操作,她会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为新的主节点。

通知(提醒): 哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成: 哨兵节点和数据节点

哨兵节点:哨兵系统由一个或者多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
数据节点:主节点和从节点都是数据节点。

4.3 故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障,每个哨兵节点每隔1秒会向主节点、从节点以及它哨兵节点发送一次ping命令做一次心跳检测。

如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。

当超过一半哨兵节点认为该主节点主观下线了,这样就是客观下线了。

2.当主节点出现故障时, 此时哨兵节点会通过raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知,所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障时,被哨兵主观线下后,不会再有后续的客观下线和故障转移操作。

主节点的选举:

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

五、Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

5.1 集群的作用

(1)数据分区: 数据分区(或称数据分片)是集群最核心的功能。

集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用: 集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

5.2 Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383) 集群的每个节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含05460号哈希槽
节点B包含546110922号哈希槽
节点C包含1092316383号哈希槽
#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用

总结

redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster群集

主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。

哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。

集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15694.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uni-app点击按钮弹出提示框(以弹窗的形式显示),选择确定和取消

学习目标: 学习目标如下所示: uni-app点击提交按钮后弹出提示框,(以弹窗的形式显示),提示用户是否确认提交(即确定和取消),点击确定后调用真正的提交方法,将数据传给后端…

【计算机视觉|人脸建模】3D人脸重建基础知识(入门)

本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 一、三维重建基础 三维重建(3D Reconstruction)是指根据单视图或者多视图的图像重建三维信息的过程。 1. 常见三维重建技术 人工几何模型仪器采集基于图像的建模描述基于几何建模…

Zookeeper学习笔记

0、ZooKeeper安装与集群安装 略。。。 1、Zookeeper介绍 Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。 1.1、Zookeeper工作机制 Zookeeper从设计模式的角度来理解:是一个基于观察者模式设计的分布式服务管理框架&#xf…

从Arweave开始:4EVERLAND存储签入挑战开始

嗨,4evers, 今天,我们热烈欢迎您参加 Galxe 上的 4EVERLAND “Arweave 入门”活动。这是一项长期的重头活动,所有参与的用户都有机会获得相应的奖励。 Arweave 是一种革命性的去中心化存储协议,为寻求安全可靠的有价…

【Linux】进程轻松入门

目录 一, 冯* 诺依曼体系结构 1,存储结构 ​编辑 二, 操作系统 1,概念 2,设计OS的目的 3,定位 4,如何理解 "管理" 5, 总结 三,进程 1. 概念 那么…

26 用lsqnonlin求解最小二乘问题(matlab程序)

1.简述 函数语法 x lsqnonlin(fun,x0) 函数用于: 解决非线性最小二乘(非线性数据拟合)问题 解决非线性最小二乘曲线拟合问题的形式 变量x的约束上下限为ub和lb, x lsqnonlin(fun,x0)从x0点开始,找到fun中描述的函数的最小平方和。函数fu…

zore-shot,迁移学习和多模态学习

1.zero-shot 定义:在ZSL中,某一类别在训练样本中未出现,但是我们知道这个类别的特征,然后通过语料知识库,便可以将这个类别识别出来。概括来说,就是已知描述,对未知类别(未在训练集中…

前端Vue入门-day05-自定义指令、插槽、路由入门

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 自定义指令 基本语法 (全局&局部注册) 全局注册 局部注册 指令的值 v-loading 指令封装 插槽 …

【Linux】TCP协议

​🌠 作者:阿亮joy. 🎆专栏:《学会Linux》 🎇 座右铭:每个优秀的人都有一段沉默的时光,那段时光是付出了很多努力却得不到结果的日子,我们把它叫做扎根 目录 👉TCP协议&…

【C++】类和对象-C++运算符重载

运算符重载 1.加号运算符重载 代码&#xff1a; #include <iostream> using namespace std; /******************************************/ //加号运算符重载class Person { public:int m_A;int m_B;//1、成员函数重载号(不能与下面方式2同时存在&#xff0c;否则代码报…

flag{网鼎杯之java代码审计入门} - file-in-java[ctf]

一、赛题截图 二、接口测试 我们先上传文件抓包&#xff0c;发送到repeter 响应如下 我们使用下载接口去下载一个不存在的文件&#xff0c;回显“资源被删除” - 说明系统可能去查找了这个文件&#xff0c;那我们能不能去下载/etc/passwd文件&#xff0c;但是还不知道相对…

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

AttributeError: ‘DataFrame‘ object has no attribute ‘iteritems‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

程序设计 算法基础

✅作者简介&#xff1a;人工智能专业本科在读&#xff0c;喜欢计算机与编程&#xff0c;写博客记录自己的学习历程。 &#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&…

纯JS+Vue实现一个仪表盘

在使用canvas的时候发现数值变化&#xff0c;每次都要重新渲染&#xff0c;值都从0开始&#xff0c;这和我的需求冲突。 1. 先绘制基本的圆环背景&#xff0c;利用border-color和border-radius将正方形变成基本的圆环。 <div class"circle"><div class&qu…

vue3如何封装框架

在Vue 3中&#xff0c;你可以通过创建一个基础的框架来封装一些常用的功能、组件和样式&#xff0c;以便在不同的项目中重复使用。下面是一个简单的步骤来封装一个Vue 3框架&#xff1a; 创建一个新的Vue项目&#xff1a;首先&#xff0c;使用Vue CLI创建一个新的Vue项目。 v…

试试这三款音频转换格式软件,看看可不可以转换mp3?

你是不是不知道音频转换格式有什么用呢&#xff1f;为什么要音频转换呢&#xff1f; 其实音频转换格式的原因是&#xff1a; ①兼容性问题&#xff1a;不同的设备支持不同的音频格式&#xff0c;如果你想在不同设备之间共享音频文件的话&#xff0c;那么需要将文件转换另一种…

CSDN如何输入公式

方法分三步&#xff1a; 1&#xff09;预先设置MathType的复制剪切选项 2&#xff09;将MathType已经编写好的公式复制到CSDN 3&#xff09;把复制的公式文本&#xff0c;首尾的“\[”和“\]”符号替换成“$$”和“$$” 1&#xff09;预先设置MathType的复制剪切选项 2&#x…

java实现文件下载

1.文件上传 文件上传&#xff0c;也称为upload&#xff0c;是指将本地图片、视频、音频等文件上传到服务器上&#xff0c;可以供其他用户浏览或下载的过程。文件上传在项目中应用非常广泛&#xff0c;我们经常发微博、发微信朋友圈都用到了文件上传功能。 import com.itheima.…

打印Winfrom控件实现简陋版的打印(C#)

本文在前面写的博文基础上进行修改&#xff1a;利用Graphics的CopyFromScreen实现简陋版的打印(C#)_zxy2847225301的博客-CSDN博客 通过截图的方式进行打印在前面的文章后面已经介绍过&#xff0c;有问题。 UI布局如下&#xff1a; 代码如下&#xff1a; using System; using…