架构探索之路-第一站-clickhouse | 京东云技术团队

一、前言

架构, 软件开发中最熟悉不过的名词, 遍布在我们的日常开发工作中, 大到项目整体, 小到功能组件, 想要实现高性能、高扩展、高可用的目标都需要优秀架构理念辅助. 所以本人尝试编写架构系列文章, 去剖析市面上那些经典优秀的开源项目, 学习优秀的架构理念来积累架构设计的经验与思考, 在后续日常工作中遇到相同问题时能有更深一层的认知.

本章以实时OALP引擎Clickhouse(简称ck)为例, 以其面向场景, 架构设计, 细节实现等方面来介绍, 深度了解其如何成为了OLAP引擎中的性能之王.

二、Clickhouse简介

Clickhouse是俄罗斯Yandex(俄罗斯网络用户最多的网站)于2016年开源的一个用于联机分析(OLAP)的列式数据库管理系统,采用C++语言编写, 主要用于在线分析处理查询, 通过SQL查询实时生成分析数据报告.

主要面向场景是快速支持任意指标、任意维度并且可以在大数据量级下实现秒级反馈的Ad-hoc查询(即席查询).

三、Clickhouse架构原理

clickhouse以其卓越的性能著称, 在相关性能对比报告中, ck在单表SQL查询的性能是presto的2.3倍、impala的3倍、greenplum的7倍、hive的48倍. 可以看出ck在单表查询是非常出色的, 那么ck究竟是如何实现高效查询的呢?

1. 引子

介绍ck查询原理之前先以最常见的mysql为例, 一条简单的查询语句是如何执行的, 然后再以ck架构师的角度去考虑ck应该如何优化. mysql查数据时会先从磁盘读出数据所在页(innodb存储单元) 到内存中, 然后再从内存中返回查询结果, 所以在我们的认知中sql查询(排除语法词法解析,优化等步骤)总结起来可以为以下两点:

  1. 磁盘读取数据到内存
  2. 内存中解析数据匹配结果返回

在现代计算机中, CPU参与运算的时间远小于磁盘IO的时间. 所以现代OLAP引擎大部分也选择通过降低磁盘IO的手段来提高查询性能, 举例如下:

降低磁盘IO原理举例列式
分布式并行读取数据,降低单节点读取数据量hive(texfile)数据倾斜,网络耗时,资源浪费
列式存储将每一列单独存储, 按需读取hbase适合列使用单一的业务

2. 架构

通过以上推导分析, 我们可以得出OLAP查询瓶颈在于磁盘IO, 那么ck的优化手段也是借鉴了以上措施, 采用了MPP架构(大规模并行处理)+列式存储, 拥有类似架构设计的其他数据库产品也有很多, 为什么ck性能如此出众? 接下来我们具体分析ck的核心特性, 进一步体会ck架构师的巧妙的架构理念.

2.1 列式存储

行式存储: 把同一行数据放到同一数据块中, 各个数据块之间连续存储.

列式存储: 把同一列数据放到同一数据块中, 不同列之间可以分开存储.

如同上述所讲, 分析类查询往往只需要一个表里很少的几个字段, Column-Store只需要读取用户查询的column, 而Row-Store读取每一条记录的时候会把所有column的数据读出来, 在IO上Column-Store比Row-Store效率高得多, 因此性能更好.

2.2 block

clickhouse能处理的最小单位是block, block是一群行的集合, 默认最大为8192行. 因为每一列单独存储, 因此每个数据文件相比于行式存储更有规律, 通过对block采用LZ4压缩算法, 整体压缩比大致可以8:1. 可以看出, clickhouse通过出色的压缩比与block结构实现了批处理功能, 对比海量数据存储下每次处理1行数据的情况, 大幅减少了IO次数, 从而达到了存储引擎上的优化.

2.3 LSM

LSM的思想: 对数据的修改增量保持在内存中,达到指定的限制后将这些修改操作批量写入到磁盘中,相比较于写入操作的高性能,读取需要合并内存中最近修改的操作和磁盘中历史的数据,即需要先看是否在内存中,若没有命中,还要访问磁盘文件

LSM的原理: 把一颗大树拆分成N棵小树,数据先写入内存中,随着小树越来越大,内存的小树会flush到磁盘中。磁盘中的树定期做合并操作,合并成一棵大树,以优化读性能。

Clickhouse通过LSM实现数据的预排序, 从而减少磁盘的读取量. 原理就是将乱序数据通过LSM在村中排序, 然后写入磁盘保存, 并定期合并有重合的磁盘文件. clickhouse的写入步骤可以总结为以下几点:

  1. 每一批次数据写入,先记录日志, 保证高可用机制
  2. 记录日志之后存入内存排序, 后将有序结果写入磁盘,记录合并次数Level=0
  3. 定期将磁盘上Level=0或1的文件合并,并标记删除. 后续物理删除
2.4 索引

clickhouse的采用一级索引(稀疏索引)+二级索引(跳数索引)来实现索引数据定位与查询. 一级索引记录每个block块的第一个, 每次基于索引字段查询只需要确定查询第几个block块即可, 避免一个查询遍历所有数据. 如上述介绍,一个block块为8192行,那么1亿条数据只需要1万行索引, 所以一级索引占用存储较小, 可常驻内存, 加速查询. 二级索引由数据的聚合信息构建而成,根据索引类型的不同,其聚合信息的内容也不同,跳数索引的目的与一级索引一样,也是帮助查询时减少数据扫描的范围, 原则都是“排除法”,即尽可能的排除那些一定不满足条件的索引粒度

另一方面可以发现, 因ck存储引擎按有序集合存储, 所以在索引结构上, 并不需要再利用B+树排序特性来定位. 所以在实际使用过程中, 也不需要满足最左原则匹配, 只要过滤条件中包含索引列即可.

2.5 向量化执行

向量化计算(vectorization),也叫vectorized operation,也叫array programming,说的是一个事情:将多次for循环计算变成一次计算。 为了实现向量化执行,需要利用CPU的SIMD指令。SIMD的全称是Single Instruction Multiple Data,即用单条指令操作多条数据。现代计算机系统概念中,它是通过数据并行以提高性能的一种实现方式 ( 其他的还有指令级并行和线程级并行 ),它的原理是在CPU寄存器层面实现数据的并行操作。

在计算机系统的体系结构中,存储系统是一种层次结构。典型服务器计算机的存储层次结构如图1所示。一个实用的经验告诉我们,存储媒介距离CPU越近,则访问数据的速度越快。

从左至右,距离CPU越远,则数据的访问速度越慢。从寄存器中访问数据的速度,是从内存访问数据速度的300倍,是从磁盘中访问数据速度的3000万倍。所以利用CPU向量化执行的特性,对于程序的性能提升意义非凡。 ClickHouse目前利用SSE4.2指令集实现向量化执行。

四、Clickhouse总结

1. clickhouse的舍与得

clickhouse在追求极致性能的路上, 采取了很多优秀的设计. 如上述讲的列存、批处理、预排序等等. 但是架构都有两面性, 从一另方面也带来了一些缺点

  • 高频次实时写入方面, 因ck会将批量数据直接落盘成小文件, 高频写入会造成大量小文件生成与合并, 影响查询性能. 所以ck官方也是建议大批低频的写入, 提高写入性能. 实际场景中建议在业务与数据库之间引入一层数据缓存层,来实现批量写入
  • 查询并发问题, clickhouse是采用并行处理机制, 即一个查询也会使用一半cpu去执行, 在安装时会自动识别cpu核数, 所以在发挥查询快的优势下, 也带来了并发能力的不足. 如果过多的查询数堆积达到max_concurrent_queries阈值, 则会报出too many simultaneous queries异常, 这也是ck的一种限流保护机制. 所以日常使用过程中注意慢sql的排查, 并发请求的控制是保证ck高可用的关键.

我们了解其原理之后, 能够对clickhouse有更深的认知, 也能够解释生产工作中曾经遇到的问题, 站在clickhouse架构师的角度去合理使用, 规避劣势, 发挥其特性.

2. clickhouse在实际生产中遇到的问题

2.1 zookeeper高负载影响

目前clickhouse开源版本ReplicatedMergeTree引擎强依赖zookeeper完成多副本选主, 数据同步, 故障恢复等功能, zookeeper在负载较高的情况下,性能表现不佳, 甚至会出现副本无法写入, 数据无法同步问题. 分析clickhouse对zookeeper相关的使用, 以副本复制流程为例, ck对zookeeper频繁的分发日志、数据交换是引起瓶颈原因之一.

解决通用方案:

京东零售: 自研基于Raft分布式共识算法的zookeeper替代方案.

2.2 资源管控问题

ClickHouse的资源管控能力不够完善,在 insert、select 并发高的场景下会导致执行失败,影响用户体验。这是因为社区版ClickHouse目前仅提供依据不同用户的最大内存控制,在超过阈值时会杀死执行的 query。

易观性能对比: https://zhuanlan.zhihu.com/p/54907288

官网性能对比: https://clickhouse.com/

作者:京东科技 李丹枫

来源:京东云开发者社区 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/156831.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

移远通信推出六款新型天线,为物联网客户带来更丰富的产品选择

近日,移远通信重磅推出六款新型天线,覆盖5G、非地面网络(NTN)等多种新技术,将为物联网终端等产品带来全新功能和更强大的连接性能。 移远通信COO张栋表示:“当前,物联网应用除了需要高性能的天线…

【libGDX】使用Mesh绘制三角形

1 Mesh 和 ShaderProgram 简介 1.1 创建 Mesh 1)Mesh 的构造方法 public Mesh(boolean isStatic, int maxVertices, int maxIndices, VertexAttribute... attributes) public Mesh(boolean isStatic, int maxVertices, int maxIndices, VertexAttributes attribut…

js ::after简单实战

::after的作用是在元素后面再加个XXX样式 工作中遇到了一个表格,鼠标指到单元格要有个整行编辑态的效果,下面写个简单的demo 有人可能会说了,直接修改某个单元格的hover样式不就行了嘛,问题是如果鼠标指到单元格和单元格直接的…

Android DatePicker(日期选择器)、TimePicker(时间选择器)、CalendarView(日历视图)- 简单应用

示意图&#xff1a; layout布局文件&#xff1a;xml <?xml version"1.0" encoding"utf-8"?> <ScrollView xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.android.com/apk/res-auto"…

时序预测 | Pytorch实现TCN-Transformer的时间序列预测

时序预测 | Pytorch实现TCN-Transformer的时间序列预测 目录 时序预测 | Pytorch实现TCN-Transformer的时间序列预测效果一览基本介绍程序设计 效果一览 基本介绍 基于TCN-Transformer模型的时间序列预测&#xff0c;可以用于做光伏发电功率预测&#xff0c;风速预测&#xff0…

Vue2+Vue3

文章目录 第 1 章&#xff1a;Vue 核心1、 Vue 简介1.官网2.介绍与描述3. Vue 的特点4. 与其它 JS 框架的关联5. Vue 周边库 2、初始Vue3、模板语法1、Vue模板语法有2大类:2、插值语法和指令语法 4、数据绑定1. 单向数据绑定2. 双向数据绑定 5、el与data的两种写法1.e1有2种写法…

外部 prometheus监控k8s集群资源

prometheus监控k8s集群资源 一&#xff0c;通过CADvisior 监控pod的资源状态1.1 授权外边用户可以访问prometheus接口。1.2 获取token保存1.3 配置prometheus.yml 启动并查看状态1.4 Grafana 导入仪表盘 二&#xff0c;通过kube-state-metrics 监控k8s资源状态2.1 部署 kube-st…

网络运维与网络安全 学习笔记2023.11.21

网络运维与网络安全 学习笔记 第二十二天 今日目标 端口隔离原理与配置、路由原理和配置、配置多路由器静态路由 配置默认路由、VLAN间通信之路由器 端口隔离原理与配置 端口隔离概述 实现报文之间的2层隔离&#xff0c;除了使用VLAN技术以后&#xff0c;还可以使用端口隔…

c语言:十进制转任意进制

思路&#xff1a;如十进制转二进制 就是不断除二求余在除二求余&#xff0c;然后将余数从下到写出来&#xff0c;这样&#xff0c;10011100就是156的二进制 这里举例一个六进制的代码&#xff1a; #define _CRT_SECURE_NO_WARNINGS #include<stdio.h>int main() {int …

opencv-简单图像处理

图像像素存储形式  对于只有黑白颜色的灰度图&#xff0c;为单通道&#xff0c;一个像素块对应矩阵中一个数字&#xff0c;数值为0到255, 其中0表示最暗&#xff08;黑色&#xff09; &#xff0c;255表示最亮&#xff08;白色&#xff09; 对于采用RGB模式的彩色图片&#…

「MACOS限定」 如何将文件上传到GitHub仓库

介绍 本期讲解&#xff1a;如何在苹果电脑上上传文件到github远程仓库 注&#xff1a;写的很详细 方便我的朋友可以看懂操作步骤 第一步 在电脑上创建一个新目录&#xff08;文件夹&#xff09; 注&#xff1a;创建GitHub账号、新建github仓库、git下载的步骤这里就不过多赘…

118.184.158.111德迅云安全浅谈如何避免网络钓鱼攻击

随着互联网的不断发展&#xff0c;网络钓鱼攻击也越来越猖獗&#xff0c;给个人和企业带来了巨大的经济损失和安全威胁。本文对如何防范网络钓鱼攻击提出的一些小建议 希望对大家有所帮助。 1.防止XSS&#xff08;跨站脚本攻击&#xff09;攻击 XSS攻击指的是攻击者在网站中注入…

html手势密码解锁插件(附源码)

文章目录 1.设计来源1.1 界面效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/134534785 html手势密码解锁插件(附源码)&#xff0c;仿手机手势密码&#xff0c;拖动九…

基于SSM的网络财务管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

基恩士软件的基本操作(四,快速编辑plc技巧)

目录 单元软原件注释快速添加 双击单元配置&#xff0c;进入单元编辑器 KV一键添加注释 双击软元件注释 进入软元件编辑界面 &#xff0c;对弹出的列表中软元件打勾点击登录 元件注释就自动添加了 注释收索&#xff0c;快速编辑软元件 自定义注释收索 空软元件快速查找 …

【Windows 常用工具系列 11 -- win11怎么设置不睡眠熄屏 |win11设置永不睡眠的方法】

文章目录 win11 怎么设置不睡眠熄屏 使用笔记本电脑的时候&#xff0c;如果离开电脑时间稍微长一点就会发现息屏了&#xff0c;下面介绍 设置 Win11 永不睡眠息屏的方法&#xff0c;有需要的朋友们快来看看以下详细的教程。 win11 怎么设置不睡眠熄屏 在电脑桌面上&#xff0c…

flutter iOS 视频mov格式转MP4格式

flutter iOS 视频mov格式转MP4格式 前言一、使用video_compress压缩视频总结 前言 今天在写项目的时候&#xff0c;突然发现iOS 里面的有些视频格式是mov的格式&#xff0c;这就导致在视频播放组件无法播放的问题&#xff0c;期间试过替换视频格式&#xff0c;但是又不想存储文…

dolphinscheduler任务莫名重跑

dolphinscheduler运行了一段时间&#xff0c;忽然发现一个流程下某个任务一直在自动重跑&#xff0c;把工作流删了&#xff0c;任务删了&#xff0c;下线等等&#xff0c;都不能阻止他重复的运行&#xff0c;每秒1次&#xff0c;真是见了鬼 1、把zookeeper停掉发现不再重跑了 …

nodejs微信小程序+python+PHP-维斯公司财务管理系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

CentOS 8最小安装,VM使用这个内存占用小很多

文章目录 一、安装包下载作者使用的安装包 二、安装过程截图三、最小化安装拥有的外部命令四、查看ip&#xff08;方便ssh连接&#xff09;五、yum源有问题参考文档 一、安装包下载 CentOS 网站&#xff1a; https://www.centos.org/CentOS 维基&#xff1a; https://wiki.cen…