STM32定时器输入捕获测量高电平时间

STM32定时器输入捕获测量高电平时间

  • 输入捕获
  • 测量高电平时间
    • CuebMX配置
    • 代码部分

本篇内容要求读者对STM32通用定时器有一点理解,如有不解,请看 夜深人静学32系列15——通用定时器

输入捕获

在这里插入图片描述

  • 输入捕获是STM32通用定时器的一种功能,可以捕获特定引脚的电平变化(上升沿/下降沿)
  • 对于一个变化的信号。只需要测量上升沿与下降沿的时间间隔,即可计算出高电平的时间。

当上述时间间隔过长时,由于定时器计数范围有限,因此可能存在溢出的情况,这点需要注意。解决办法如下:

  • 检测到第一个有效沿时清空定时器计数值,创建一个变量TIM5CH1_CAP_STA,在每次定时器溢出时,TIM5CH1_CAP_STA加1,检测到第二个有效沿时,读取定时器计数值,那么:
  • 时间间隔 = TIM5CH1_CAP_STA*定时器计数值最大值+定时器当前计数值
    在这里插入图片描述

测量高电平时间

CuebMX配置

在这里插入图片描述
在这里插入图片描述

其它部分设置,请参照往期内容,这里不做赘述,同时需开启定时器3的中断

代码部分

  • main.c
extern uint8_t TIM5CH1_CAP_STA;
extern uint16_t TIM5CH1_CAP_VAL;int main(void)
{/* USER CODE BEGIN 1 */long long temp = 0;// 定义一个变量用以存储捕获到的时间 long long型是为了防止数据溢出/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM3_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */HAL_TIM_IC_Start_IT(&htim3,TIM_CHANNEL_3);  // 一定要开启TIM5通道1的捕获中断__HAL_TIM_ENABLE_IT(&htim3,TIM_IT_UPDATE);  // 一定要开启TIM5的更新中断printf("This is Timer3_Channel_Input_Capture test...\n");/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){HAL_Delay(500);if(TIM5CH1_CAP_STA & 0X80)    // 完成一次高电平捕获{temp = TIM5CH1_CAP_STA & 0X3F;temp *= 65536;            // 溢出总时间temp += TIM5CH1_CAP_VAL;  // 总的高电平时间printf("High level duration:%lld us\r\n",temp);TIM5CH1_CAP_STA = 0;      // 准备下一次捕获}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}
  • tim.c
/* TIM5CH1_CAP_STA 各数据位说明
** bit7   捕获完成标志
** bit6   捕获到高电平标志
** bit5~0 捕获高电平后定时器溢出的次数*/
uint8_t TIM5CH1_CAP_STA = 0;                        // 输入捕获状态
uint16_t TIM5CH1_CAP_VAL;                           // 输入捕获值
// 中断服务函数里面会自动调用这个回调函数,这个是定时器更新中断处理的函数
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{if(htim->Instance == TIM3)                      // 判断定时器5是否发生中断{if((TIM5CH1_CAP_STA & 0X80) == 0)           // 还未成功捕获{if(TIM5CH1_CAP_STA & 0X40)              // 已经捕获到高电平{       if((TIM5CH1_CAP_STA & 0X3F) == 0X3F)// 高电平时间太长了,做溢出处理{   TIM5CH1_CAP_STA |= 0X80;        // 标记为完成一次捕获TIM5CH1_CAP_VAL = 0XFFFF;       // 计数器值}else{TIM5CH1_CAP_STA++;              // 若没有溢出,就只让TIM5CH1_CAP_STA自加}                }   }}
}// 定时器输入捕获中断处理回调函数,该函数在 HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) 中会被调用
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{if((TIM5CH1_CAP_STA & 0X80) == 0)               // 还未成功捕获{if(TIM5CH1_CAP_STA & 0X40)                  // 捕获到一个下降沿{       TIM5CH1_CAP_STA |= 0X80;                // 标记成功捕获到一次高电平脉宽TIM5CH1_CAP_VAL = HAL_TIM_ReadCapturedValue(&htim3, TIM_CHANNEL_3); // 获取当前的计数器值TIM_RESET_CAPTUREPOLARITY(&htim3, TIM_CHANNEL_3);                   // 清除原来的设置      TIM_SET_CAPTUREPOLARITY(&htim3,TIM_CHANNEL_3, TIM_ICPOLARITY_RISING);// 设置上升沿捕获}else{TIM5CH1_CAP_STA = 0;                    // 清空自定义的状态寄存器TIM5CH1_CAP_VAL = 0;                    // 清空捕获值TIM5CH1_CAP_STA |= 0X40;                // 标记捕获到上升沿__HAL_TIM_DISABLE(&htim3);              // 关闭定时器__HAL_TIM_SET_COUNTER(&htim3, 0);       // 计数器值清零TIM_RESET_CAPTUREPOLARITY(&htim3,TIM_CHANNEL_3);    // 一定要先清除原来的设置  !!          TIM_SET_CAPTUREPOLARITY(&htim3,TIM_CHANNEL_3,TIM_ICPOLARITY_FALLING);   // 设置下降沿捕获__HAL_TIM_ENABLE(&htim3);               // 使能定时器        }   }
}

串口重定向部分代码,这里不做展示,往期内容中有…下面来讲一下代码流程

  1. 系统正常运行,检测到第一个上升沿,进入HAL_TIM_IC_CaptureCallback(),执行以下代码

在这里插入图片描述
清除定时器计数值,设置下一次触发为下降沿触发。。。

2.等待下一次下降沿触发,期间定时器一直计数,过程中可能存在定时器溢出,溢出进入HAL_TIM_PeriodElapsedCallback(),执行以下代码

在这里插入图片描述
记录期间定时器溢出的次数。

  1. 检测到第二个下降沿,进入HAL_TIM_IC_CaptureCallback(),执行以下代码

在这里插入图片描述
读取当前定时器计数值,标记捕获高电平持续时间完成

  1. main函数里面计算持续时间,至此完成一次高电平持续时间检测
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/156437.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

axios 请求合集

post 请求 请求负载请求参数(Request Payload) import axios from axios import qs from query-stringexport function getRoles(data){return axios.post(目标地址,data,{headers:{Content-Type: application/json,},}) }表单请求参数(Form…

OGG-01224 Address already in use 问题

ERROR OGG-01224 Oracle GoldenGate Manager for Oracle, mgr.prm: Address already in use. ERROR OGG-01668 Oracle GoldenGate Manager for Oracle, mgr.prm: PROCESS ABENDING. 查看端口被占用情况: [rootcenterone ogg]# lsof -i:7809原因mgr 7809 端口被占…

Spring-IOC-@Value和@PropertySource用法

1、Book.java PropertySource(value"classpath:配置文件地址") 替代 <context:property-placeholder location"配置文件地址"/> Value("${book.bid}") Value("${book.bname}") Value("${book.price}") <bean id&…

MS90C386:+3.3V 175MHz 的 24bit 平板显示器(FPD)LVDS 信号接收器

产品简述 MS90C386 芯片能够将 4 通道的低压差分信号&#xff08; LVDS &#xff09;转换成 28bit 的 TTL 数据。时钟通道与数据通道并行输入。在时钟频率 为 175MHz 时&#xff0c; 24bit 的 RGB 数据、 3bit 的 LCD 时序数据和 1bit 的控制数据以 1225Mb…

Es 拼音搜索无法高亮

目录 背景&#xff1a; Es 版本&#xff1a; 第一步 第二步 &#xff08;错误步骤 - 只是记录过程&#xff09; 第三步 第四步 第五步 第六步 第七步 背景&#xff1a; app 原有的搜索功能无法进行拼音搜索&#xff0c;产品希望可以支持&#xff0c;例如内容中含有&a…

c++|内联函数

一、概念 以inline修饰的函数叫做内联函数&#xff0c;编译时c编译器会在调用函数的地方展开&#xff0c;而不会建立栈帧&#xff0c;提升了程序运行的效率 例子&#xff1a; #include <iostream> using namespace std;int Add(int left, int right) {return left - ri…

配置环境-insightface-torch

1. 创建环境&#xff1a;conda create -n insightface2 python3.8 2.安装pytorch: 我的cuda 是 11.3 然后进入 pytorch 官网查找对应cuda 版本 pytorch 安装 建议使用 pip # CUDA 11.3 conda install pytorch1.12.1 torchvision0.13.1 torchaudio0.12.1 cudatoolkit11.3 -…

openGauss学习笔记-127 openGauss 数据库管理-设置账本数据库-修复账本数据库

文章目录 openGauss学习笔记-127 openGauss 数据库管理-设置账本数据库-修复账本数据库127.1 前提条件127.2 背景信息127.3 操作步骤 openGauss学习笔记-127 openGauss 数据库管理-设置账本数据库-修复账本数据库 127.1 前提条件 系统中需要有审计管理员或者具有审计管理员权…

Leetcode_48:旋转图像

题目描述&#xff1a; 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],…

【Java】NIO概述

本文主要介绍Java的IO。 这里主要按类的操作方式和操作对象对JavaIO进行分类&#xff0c;方便理解&#xff0c;后续使用时可以方便地查询。 一、操作方式分类 首先介绍几组概念&#xff1a; 字节流和字符流&#xff1a; 字节流&#xff1a;以字节为单位&#xff0c;每次次读…

(二)pytest自动化测试框架之添加测试用例步骤(@allure.step())

前言 在编写自动化测试用例的时候经常会遇到需要编写流程性测试用例的场景&#xff0c;一般流程性的测试用例的测试步骤比较多&#xff0c;我们在测试用例中添加详细的步骤会提高测试用例的可阅读性。 allure提供的装饰器allure.step()是allure测试报告框架非常有用的功能&am…

Linux学习第44天:Linux 多点电容触摸屏实验:难忘记第一次牵你手的温存

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 本章的思维导图内容如下&#xff1a; 二、硬件原理图分析 三、实验程序编写 1、修改设备树 1&#xff09;、添加FT5426所使用的IO 一个复位 IO、一个中断 IO、…

Python的安装及其python程序生成exe可执行程序

Python是一种高级编程语言&#xff0c;由Guido van Rossum在1989年12月首次发布。它具有简单易学、易读、易写的语法和强大的动态类型和垃圾回收机制。Python解释器是自由且开放源代码的软件&#xff0c;可以在各种操作系统&#xff08;如Linux、Windows、macOS等&#xff09;上…

gitlab图形化界面使用

gitlab使用 创建用户 上面是创建用户基本操作 修改密码 创建组 给组添加用户 创建项目 选择空白项目 退出root用户&#xff0c;切换其他用户 在服务器上创建ssh密钥 使用ssh-ketgen 命令 新服务器上创建的 [rootgitlab ~]# ssh-keygen Generating public/private rsa key …

n-皇后问题(DFS回溯)

n−皇后问题是指将 n 个皇后放在 nn的国际象棋棋盘上&#xff0c;使得皇后不能相互攻击到&#xff0c;即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 n&#xff0c;请你输出所有的满足条件的棋子摆法。 输入格式 共一行&#xff0c;包含整数 n。 输出…

深入了解Java 8 新特性:Stream流的实践应用(一)

阅读建议 嗨&#xff0c;伙计&#xff01;刷到这篇文章咱们就是有缘人&#xff0c;在阅读这篇文章前我有一些建议&#xff1a; 本篇文章大概一万多字&#xff0c;预计阅读时间长需要10分钟&#xff08;不要害怕字数过多&#xff0c;其中有一大部分是示例代码&#xff0c;读起…

数据结构【DS】图的遍历

BFS 要点 需要一个辅助队列visited数组&#xff0c;防止重复访问 复杂度 时间复杂度&#xff1a;访问结点的时间访问所有的边的时间 广度优先生成树 邻接表存储的图的表示方式不唯一&#xff0c;生成树也不唯一 DFS 复杂度 时间复杂度&#xff1a;访问结点的时间访问所有…

万字解析设计模式之桥接模式、外观模式

一、桥接模式 1.1概述 桥接模式是一种结构型设计模式&#xff0c;它的作用是将抽象部分和实现部分分离开来&#xff0c;使它们能够独立地变化。这样&#xff0c;抽象部分和实现部分可以分别进行扩展&#xff0c;而不会相互影响。它是用组合关系代替继承关系来实现&#xff0c;…

全链路压测的步骤及重要性

全链路压测是一种系统性的性能测试方法&#xff0c;旨在模拟真实用户场景下的完整操作流程&#xff0c;全面评估软件系统在不同压力下的性能表现。这种测试方法对于保证应用程序的高可用性、稳定性和可扩展性至关重要。 1. 全链路压测概述 全链路压测是在模拟实际用户使用场景的…

什么是PyQt?

什么是Qt? Qt是一个著名的跨平台C图形用户界面应用程序开发框架。它由Qt公司开发,于1995年首次发布。Qt支持各种桌面,嵌入式和移动平台。 Qt的特点包括: 跨平台支持:Qt应用程序可以编译到多种平台运行,包括Windows,Mac,Linux,Android,iOS等。这大大简化了跨平台应用程序的开…