【云原生-Kurbernetes篇】HPA 与 Rancher管理工具

文章目录

  • 一、Pod的自动伸缩
    • 1.1 HPA
      • 1.1.1 简介
      • 1.1.2 HPA的实现原理
      • 1.1.3 相关命令
    • 1.2 VPA
      • 1.2.1 简介
      • 1.2.2 VPA的组件
      • 1.2.3 VPA工作原理
    • 1.3 metrics-server简介
  • 二、 HPA的部署与测试
    • 2.1 部署metrics-server
      • Step1 编写metrics-server的配置清单文件
      • Step2 部署
      • Step3 测试kubectl top命令
    • 2.2 部署HPA
      • Step1 部署测试应用
      • Step2 创建HPA控制器
    • 2.3 测试HPA
      • 2.3.1 HPA自动扩容测试
      • 2.3.2 HPA自动回收测试
    • 思考:回收的时候,负载节点数量下降速度比较慢的原因?
  • 三、Rancher管理工具
    • 3.1 使用背景
    • 3.2 Rancher简介
    • 3.3 Rancher 的安装及配置
      • Step1 安装Rancher
      • Step2 登录 Rancher 平台
      • Step3 使用Rancher 管理已有的 k8s 集群
      • Step4 Rancher 部署监控系统
      • Step5 使用 Rancher 仪表盘管理 k8s 集群

一、Pod的自动伸缩

注:HPA和VPA不能同时使用

HPA 主要关注整个应用程序水平方向的伸缩,通过调整 Pod 的副本数量来应对负载变化;

VPA 则关注 Pod 内部容器的垂直伸缩,通过调整容器的资源限制来优化资源利用和性能。

1.1 HPA

1.1.1 简介

HPA: Pod水平自动伸缩,根据Pod的CPU(原生支持)或内存(后期的新版本支持)的使用率为控制器管理的Pod资源副本数量实现自动扩缩容。

1.1.2 HPA的实现原理

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

利用metrics-server插件组件,定期的(默认为15s)收集Pod资源平均CPU负载情况,根据HPA配置的CPU内存的requests资源量百分比阈值动态调整Pod的副本数量

HPA扩容时 ,Pod副本数量上升会比较快

HPA缩容时 ,Pod副本数量下降会比较慢默认冷却时间为5m)。

1.1.3 相关命令

#获取特定命名空间(Namespace)下的HorizontalPodAutoscaler(HPA)资源列表
kubectl get hpa -n <命名空间>
#自动伸缩Kubernetes控制器资源
kubectl autoscale <控制器资源类型> <控制器资源名称> --min=<最小副本数> --max=<最大副本数> --cpu-percent=<requests资源量百分比阈值>
#详解
<控制器资源类型>: 控制器资源的类型,例如Deployment、ReplicaSet等。<控制器资源名称>: 控制器资源的名称,指定你要进行自动伸缩的资源。--min=<最小副本数>: 指定自动伸缩时的最小副本数。--max=<最大副本数>: 指定自动伸缩时的最大副本数。--cpu-percent=<requests资源量百分比阈值>: 指定自动伸缩的CPU利用率阈值百分比。当控制器资源的CPU利用率达到阈值时,将自动扩展副本数。

1.2 VPA

1.2.1 简介

VPA: Pod垂直自动伸缩 ,根据Pod容器的CPU和内存的使用率自动设置Pod容器的CPU和内存的requests资源量限制。

1.2.2 VPA的组件

在这里插入图片描述

1)Recommender

recommender 会定期收集容器的资源使用数据,例如CPU 和内存的使用情况。

然后,它会应用一些策略和算法来计算容器的实际资源需求,并生成建议的资源请求配置。

这个建议配置包括容器应该请求多少 CPU 和内存资源,以满足其性能需求。建议配置通常存储在kubernetes的资源请求对象中。

2)Updater

updater会监视 kubernetes 中的资源请求对象,检测到recommender 生成的建议配置后,将其应用于容器的 pod 。

这将导致容器的资源请求值被更新为建议的值,从而确保容器拥有足够的资源来满足其性能需求。

3)Admission Controller

admission controller 拦截创建或修改 pod 的请求,并在提交到 kubernetes API 服务器之前检查这些请求。

如果 pod 的资源请求配置不符合 VPA 建议器生成的建议配置, admission controller 将阻止这个请求,并返回错误。

这确保了只有受 VPA 管理的 Pod 能够使用建议的资源配置。

1.2.3 VPA工作原理

在这里插入图片描述

  1. 收集资源指标: VPA 通过与 Kubernetes 的 Metrics API 进行交互,获取关于容器和节点资源使用情况的指标数据。它可以收集 CPU 使用率、内存使用量等指标。
  2. 分析资源需求: VPA 将收集到的资源指标与用户定义的策略进行比较。策略可以是静态的,例如指定容器的最小和最大资源限制;或者是动态的,例如基于平均 CPU 使用率来调整容器的 CPU 分配。
  3. 生成建议:基于资源指标和策略的比较, VPA 生成针对每个容器的资源调整建议。这些建议可能包括增加或减少容器的 CPU 、内存等资源分配。
  4. 应用资源调整: VPA 将资源调整建议发送给 Kubernetes API 服务器,并通过修改 Pod 的规格 (Spec) 来应用资源调整。这可能涉及扩容或缩容 Pod ,调整容器的资源限制或请求等。
  5. 监测与迭代: VPA 持续监控 Pod 的资源使用情况,并根据需要进行进一步的资源调整。它可以根据实际情况动态地调整资源分配,以满足容器的需求。

总体而言, VPA 通过不断收集和分析资源指标,并根据定义的策略进行资源调整,实现了对容器资源的动态优化和自动化管理。这有助于提高资源利用率,减少资源浪费,并改善应用程序的性能和可靠性。

1.3 metrics-server简介

Metrics Server是一个 Kubernetes 插件,用于收集和提供集群中运行的 Pod 和 Node 的资源使用情况的度量数据。

在这里插入图片描述

部署了metrics server插件后,能够使用kubectl top命令,可以查看 Pod、Node、命名空间以及容器的资源利用率(如 CPU 和内存)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

kubectl top node|podkubectl get hpa -n 命名空间

二、 HPA的部署与测试

2.1 部署metrics-server

Step1 编写metrics-server的配置清单文件

#工作目录
mkdri /opt/hpa vim /opt/hpa/components.yaml
apiVersion: v1
kind: ServiceAccount
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-serverrbac.authorization.k8s.io/aggregate-to-admin: "true"rbac.authorization.k8s.io/aggregate-to-edit: "true"rbac.authorization.k8s.io/aggregate-to-view: "true"name: system:aggregated-metrics-reader
rules:
- apiGroups:- metrics.k8s.ioresources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-servername: system:metrics-server
rules:
- apiGroups:- ""resources:- pods- nodes- nodes/stats- namespaces- configmapsverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server-auth-readernamespace: kube-system
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server:system:auth-delegator
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:auth-delegator
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: system:metrics-server
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:metrics-server
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: v1
kind: Service
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:ports:- name: httpsport: 443protocol: TCPtargetPort: httpsselector:k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:selector:matchLabels:k8s-app: metrics-serverstrategy:rollingUpdate:maxUnavailable: 0template:metadata:labels:k8s-app: metrics-serverspec:containers:- args:- --cert-dir=/tmp- --secure-port=4443- --kubelet-preferred-address-types=InternalIP- --kubelet-use-node-status-port- --kubelet-insecure-tlsimage: registry.cn-beijing.aliyuncs.com/dotbalo/metrics-server:v0.4.1imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livezport: httpsscheme: HTTPSperiodSeconds: 10name: metrics-serverports:- containerPort: 4443name: httpsprotocol: TCPreadinessProbe:failureThreshold: 3httpGet:path: /readyzport: httpsscheme: HTTPSperiodSeconds: 10securityContext:readOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 1000volumeMounts:- mountPath: /tmpname: tmp-dirnodeSelector:kubernetes.io/os: linuxpriorityClassName: system-cluster-criticalserviceAccountName: metrics-servervolumes:- emptyDir: {}name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:labels:k8s-app: metrics-servername: v1beta1.metrics.k8s.io
spec:group: metrics.k8s.iogroupPriorityMinimum: 100insecureSkipTLSVerify: trueservice:name: metrics-servernamespace: kube-systemversion: v1beta1versionPriority: 100

Step2 部署

kubectl apply -f components.yamlkubectl get pods -n kube-system | grep metrics-server

Step3 测试kubectl top命令

kubectl top nodekubectl top pods -A

在这里插入图片描述

hpa-example.tar 是谷歌基于 PHP 语言开发的,用于测试 HPA 的镜像,其中包含了一些可以运行 CPU 密集计算任务的代码。

2.2 部署HPA

Step1 部署测试应用

先拉取镜像

docker pull mirrorgooglecontainers/hpa-example                  

在这里插入图片描述

再编写资源配置清单文件

apiVersion: apps/v1
kind: Deployment
metadata:labels:run: php-apachename: php-apache
spec:replicas: 1selector:matchLabels:run: php-apachetemplate:metadata:labels:run: php-apachespec:containers:- image: mirrorgooglecontainers/hpa-examplename: php-apacheimagePullPolicy: IfNotPresentports:- containerPort: 80resources:requests:cpu: 200m
---
apiVersion: v1
kind: Service
metadata:name: php-apache
spec:ports:- port: 80protocol: TCPtargetPort: 80selector:

声明式创建

kubectl apply -f hpa-pod.yamlkubectl get pods

在这里插入图片描述

Step2 创建HPA控制器

使用 kubectl autoscale 命令,设置 cpu 负载阈值为请求资源的 50%,指定最少负载节点数量为 1 个,最大负载节点数量为 10 个。

#创建HPA
kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10kubectl get hpa

在这里插入图片描述

可以看到,replicas 变动范围是最小 1,最大 10;目标 CPU 利用率(utilization)为 50%

kubectl top pods

在这里插入图片描述

2.3 测试HPA

HPA可以根据应用程序的负载情况自动调整的副本数量

2.3.1 HPA自动扩容测试

当应用程序的负载增加时,HPA会根据预先设置的规则自动扩展Pod的副本数量,以应对高流量或负载的增加。

kubectl run -i --tty load-generator --rm --image=busybox --restart=Never -- /bin/sh -c "while sleep 0.01; do wget -q -O- http://php-apache; done"

利用 busybox 镜像临时生成一个 pod,用 while 循环不停的访问 php-apache 的 service。

而 php-apache 中的 http://k8s.gcr.io/hpa-example 镜像已经配置了进行消耗 CPU 的计算网页,所以 php-apache pod 的 CPU 负载会很快增长

#打开一个新的窗口,查看负载节点数目
kubectl get hpa -w

在这里插入图片描述
在这里插入图片描述

2.3.2 HPA自动回收测试

降低CPU负载,观察HPA的回收。

当应用程序的负载减少时,HPA会自动缩减Pod的副本数量

在刚才运行增加负载的窗口运行<Ctrl> + C,终止命令

在这里插入图片描述

kubectl get hpa -w

在这里插入图片描述

思考:回收的时候,负载节点数量下降速度比较慢的原因?

防止因回收策略比较积极,而导致的K8s集群认为访问流量变小而快速收缩负载节点数量,从而会引发仅剩的负载节点又承受不了高负载的压力导致崩溃,最终影响业务的风险。

归根结底,还是为了保证业务的稳定性和正常运行。

三、Rancher管理工具

3.1 使用背景

管理单个K8S集群kubectl(K8S命令行管理工具) 、dashboard(K8S官方出品的UI界面图形化管理工具) 。

同时管理多个K8S集群的工具:rancherkubespherek9s

3.2 Rancher简介

官网: https://docs.rancher.cn/

Rancher 是一个开源的企业级多集群 Kubernetes 管理平台,实现了 Kubernetes 集群在混合云+本地数据中心的集中部署与管理, 以确保集群的安全性,加速企业数字化转型。

3.3 Rancher 的安装及配置

ServerHostnameIP
控制节点master01192.168.2.100
工作节点node01192.168.2.102
工作节点node02192.168.2.103
Rancher节点rancher192.168.2.107

Step1 安装Rancher

安装docker

yum install -y yum-utils device-mapper-persistent-data lvm2 #设置阿里云镜像源
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo yum install -y docker-ce docker-ce-cli containerd.iosystemctl enable docker.service --now

详解见我的博客:【Docker从入门到入土 1】Docker架构、镜像操作和容器操作-CSDN博客

在所有 node 节点下载 rancher-agent 镜像

#所有 node 节点
docker pull rancher/rancher-agent:v2.5.7

在这里插入图片描述

在 rancher 节点下载 rancher 镜像

docker pull rancher/rancher:v2.5.7

在这里插入图片描述

启动Rancher平台

在本地机器上使用Rancher进行容器编排和管理。

docker run -d --restart=unless-stopped -p 80:80 -p 443:443 --privileged --name rancher rancher/rancher:v2.5.7
#--restart=unless-stopped 表示在容器退出时总是重启容器,但是不考虑在Docker守护进程启动时就已经停止了的容器docker ps -a|grep rancher

在这里插入图片描述

Step2 登录 Rancher 平台

需要先等一会儿,

浏览器访问 http://192.168.2.107
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Step3 使用Rancher 管理已有的 k8s 集群

选择【添加集群】--->点击【导入】--->【集群名称】设置为 k8s-cluster--->点击【创建】

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

#选择复制第三条命令绕过证书检查导入 k8s 集群
#在 k8s 控制节点 master01 上执行刚才复制的命令,如第一次执行报错,再执行一次即可
curl --insecure -sfL https://192.168.2.107/v3/import/hvcjb84tv8w99znk6wt58rvtddxzq992qd7f5l9z7dhs775blw2xr4_c-std9l.yaml | kubectl apply -f -

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

kubectl get ns

在这里插入图片描述

cattle-system是Rancher系统中的一个命名空间(Namespace),用于存储Rancher本身的管理组件和相关资源配置。

fleet-system是Rancher中的一个命名空间(Namespace),用于存储Fleet项目的相关资源配置,是由Rancher和Fleet系统自动生成的。

kubectl get pods -n cattle-system -o widekubectl get pods -n fleet-system -o wide

在这里插入图片描述

Step4 Rancher 部署监控系统

点击【启用监控以查看实时监控】—>【监控组件版本】选择 0.2.1,其他的默认即可—>点击【启用监控】。

启动监控时间可能比较长,需要等待10分钟左右
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Step5 使用 Rancher 仪表盘管理 k8s 集群

创建 nginx 服务为例。

进入集群仪表盘界面

创建命名空间 namespace

点击左侧菜单【Namespaces】--->点击右侧【Create】
【Name】输入 dev,【Description】选填可自定义
点击右下角【Create】

在这里插入图片描述

创建 Deployment 资源

点击左侧菜单【Deployments】--->点击右侧【Create】
【Namespace】下拉选择 dev,【Name】输入 nginx-dev,【Replicas】输入 3点击中间选项【Container】
【Container Image】输入 nginx:1.14,【Pull Policy】选择 IfNotPresent

在这里插入图片描述

在【Pod Labels】下点击【Add Lable】,【Key】输入 app,【Value】输入 nginx

在这里插入图片描述

点击中间选项【Labels and Annotations】--->点击【Add Label】
【Key】输入 app,【Value】输入 nginx点击右下角【Create】

在这里插入图片描述
在这里插入图片描述

创建 service

点击左侧菜单【Services】---> 点击右侧【Create】---> 点击【Node Port】

在这里插入图片描述

【Namespace】下拉选择 dev
【Name】输入 nginx-dev
【Port Name】输入 nginx
【Listening Port】输入 80
【Target Port】输入 80
【Node Port】输入 30180

在这里插入图片描述

点击中间选项【Selectors】
【Key】输入 app
【Value】输入 nginx
点击右下角【Create】

在这里插入图片描述

点击【nginx-dev】查看 service 是否已关联上 Pod
#点击 service 资源的节点端口 30180/TCP,可以访问内部的 nginx 页面了

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/155311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink Operator 使用指南 之 Flink Operator安装

介绍 Flink Kubernetes Operator 充当控制平面来管理 Apache Flink 应用程序的完整部署生命周期。尽管 Flink 的Native Kubernetes 集成已经允许用户在运行的 Kubernetes(k8s) 集群上直接部署 Flink 应用程序,但自定义资源和Operator Pattern 也已成为 Kubernetes 原生部署体…

Mrakdown Nice:格式

标题 缩进 删除线 斜体 加粗

动手学深度学习(三)---Softmax回归

文章目录 一、理论知识 softmax回归 一、理论知识 回归估计一个连续值分类预测一个离散类别 回归单连续数值输出自然区间R跟真实值的区别作为损失 分类通常多个输出输出i是预测为第i类的置信度 一般我们使用交叉熵用来衡量两个概率的区别 将它作为损失 其梯度是真实概率和…

同一台电脑访问gitee多个仓库代码

在开发上我们经常遇到&#xff0c;需要跟别人共享代码&#xff0c;特别是跟有些客户联合开发的情况下&#xff0c;有很多个客户。有些git仓库是客户建立的&#xff0c;比如有两个客户A和分布建了gitA和gitB两个代码仓库。我们在支持这两个客户的时候可能是同一个工程师&#xf…

【机器学习】033_反向传播

一、计算图、反向传播原理 1. 回顾前向传播 例&#xff1a;假设现在有一个神经网络&#xff0c;其仅有一个输出层和一个神经单元 定义 定义 &#xff0c;即激活函数对激活值不再做具体处理 定义平方损失函数 &#xff0c;计算a的值与真实值的差距 此时&#xff0c;通过计算…

2023年亚太杯数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 最短时…

LeetCode算法题解(动态规划)|LeetCoed62. 不同路径、LeetCode63. 不同路径 II

一、LeetCoed62. 不同路径 题目链接&#xff1a;62. 不同路径 题目描述&#xff1a; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下…

通明智云宣布完成数千万元A+轮融资, 引领云原生与信创两翼齐飞的应用交付解决方案

近日&#xff0c;通明智云&#xff08;北京&#xff09;科技有限公司&#xff08;简称&#xff1a;通明智云&#xff09;宣布完成数千万元A轮融资&#xff0c;由全聚合与信公投资联合投资&#xff0c;明论资本担任本轮融资独家财务顾问。本轮融资资金将主要用于NJet云原生应用引…

智能时代的智能工具(gpt)国产化助手

目前gpt对代码以及其他领域都是可以支持&#xff0c;在国内有很多&#xff0c;常用的百度的 文心一言 &#xff0c;阿里的 通义千问 &#xff0c;还有&#xff08;“豆包”&#xff0c;“”讯飞星火“”&#xff09;等&#xff0c;除了写代码可以外&#xff0c;也可以很好的支持…

【蓝桥杯省赛真题44】Scratch像素画板 蓝桥杯少儿编程scratch图形化编程 蓝桥杯省赛真题讲解

scratch像素画板 第十四届青少年蓝桥杯scratch编程省赛真题 一、题目要求 编程实现 1.点击绿旗,角色、背景如图所示(三种颜色调色盘、清除图标及方格角色请自行创建,点击绿旗后立刻呈现下图效果); 2.用鼠标点击红色调色盘,红色调色盘变为选中状态(如下图所示),此时鼠…

docker和docker-compose生产的容器,不在同一个网段,解决方式

在实际项目中&#xff0c;使用docker run xxXx 和docker-compose up -d 不在同一个网段&#xff0c;一个是默认是172.17.x.x, 另一个是172.19.x.x。为解决这个问题需要自定义一个网络&#xff0c;我命名为“my-bridge” 首先熟悉几条命令&#xff1a; docker network ls 或…

vue动态获取目录结构进行配置静态路由

文章目录 前言定义项目页面格式一、vite 配置动态路由新建 /router/utils.ts引入 /router/utils.ts 二、webpack 配置动态路由总结如有启发&#xff0c;可点赞收藏哟~ 前言 项目中动态配置路由可以减少路由配置时间&#xff0c;并可减少配置路由出现的一些奇奇怪怪的问题 路由…

多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MAT…

echarts折线图修改特定点的颜色

$.ajax({url:"/plc1672Ctrl/selectPage2.ctrl",dataType:"json",type:"POST",cache:false,data:{"serNo":$("#search").val().trim()},success:function(data){var list data.list;// x坐标var x new Array();// y坐标var…

凸包的学习之路

凸包的学习之路-CSDN博客 5.算法策略5&#xff1a;Graham Scan Algorithm 算法思路&#xff1a; 给定二维点集&#xff0c;求其凸包 1&#xff09;presorting&#xff1a; &#xff08;1&#xff09;先找到 ltl点 &#xff0c;也就是y值最小的点&#xff0c;若是存在y值相…

thinkphp8 DB_PREFIX 属性

设计表的时候使用**_user, **就是前缀&#xff0c;DB_PREFIX就是默认把前缀给去掉 在config/database.php prefix&#xff0c;改成你的前缀&#xff0c;数据库的表重命名‘ltf_user’ 代码调用 $user Db::name("user")->select();return json($user);之前是使用…

css取消移动端长按元素背景色

在开发微信小程序的时候&#xff0c;发现有的元素长按之后&#xff0c;出现了讨厌人的背景色&#xff0c;这就很奇怪&#xff0c;就想把它去掉&#xff0c;所以这里教一下方法&#xff1a; 在所在元素添加css样式&#xff1a; // 取消长按的背景色-webkit-tap-highlight-color:…

解放双手!一键助你快速发圈、批量加好友,好用哭了!

朋友们&#xff0c;你们有没有经历过管理多个微信账号的繁琐和压力&#xff1f; 会不会因为忙不过来&#xff0c;忘记及时回复客户&#xff0c;错过了推广的时机&#xff1f; 别担心&#xff0c;现在有了微信管理系统&#xff0c;一切都变得简单轻松起来&#xff01; 微信管…

03-瑞吉外卖关于菜品/套餐分类表的增删改查

新增菜品/套餐分类 页面原型 当我们在后台系统中添加菜品/套餐时,需要选择一个菜品/套餐分类,在移动端也会按照菜品分类和套餐分类来展示对应的菜品和套餐 第一步: 用户点击确定按钮执行submitForm函数发送Ajax请求,将新增菜品/套餐表单中输入的数据以json形式提交给服务端,…

Apache DolphinScheduler 3.0.0 升级到 3.1.8 教程

安装部署的流程可参考官网的文档 Version 3.1.8/部署指南/伪集群部署(Pseudo-Cluster) https://dolphinscheduler.apache.org/zh-cn/docs/3.1.8/guide/installation/pseudo-cluster 本文开始之前&#xff0c;我先补充说明一下升级 Apache DolphinScheduler 的几个关键点 元数…