【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Pythonmatlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 Python

2.2 Matlab

🎉3 参考文献

🌈4 Matlab代码、数据、文章讲解


💥1 概述

文献来源:

摘要:对任意来流条件下的风电场发电功率进行准确预测,是提高电网对风电接纳能力的有效措施。针对大型风电场的功率预测采用单点位风速外推预测代表性差的局限,提出基于高斯混合模型(GMM)聚类的风电场短期功率预测方法。方法结合数据分布特征,利用GMM聚类将大型风电场划分为若干机组群,借助贝叶斯信息准则指标评价,获得风电场内最优机组分组方案。实际算例验证表明,按照小时级、月度级、年度级等时间尺度进行统计,所建立的GMM聚类模型均极大地提高了未分组的风电功率预测模型的准确性。相较于应用广泛的k-means聚类、层次凝聚聚类等方法,GMM聚类方法在分组功率预测中表现出了显著优势,为大型风电场短期功率预测模型的优化及运行经济性的提升提供了技术支持与依据。

关键词:

风电机组;高斯混合模型聚类;合理性评价;功率预测;

 随着风力发电的大规模并网,风能的间歇性和波动性带来的问题凸显,对风电场发电功率进行准

确预测,将不确定的风电转变为可调度的友好型电源,是提高风力发电市场竞争力的有效方式[

1-2] 。面向日前电力平衡的风电场短期功率预测方法主要有基于学习算法的统计方法[3-4]和基于求解大气运动方程的物理方法[5-7] 两大类。神经网络法、时间序列法、卡尔曼滤波法等统计方法能够自发地适应不同的风电场特征,具有计算速度快、预测精度高的特点,在风电功率预测领域得到了广泛应用[8]。但由于统计方法具有黑箱性,预测功率的准确性提升仍是困扰研究及工程人员的重要难题,尤其对于复杂地形及大型风电场。因气候、地形及风电机组排布等的综合作用,风电场内不同机组表现出相异的出力特征,利用单一点位的风速外推预测整场发电功率,将难以保证预测精度;若针对单台机组分别建模,将极大地影响功率预测的时效性和经济性[9],且会增加整场预测的不确定性。因此,将整场的风电机组划分为若干机组群,建立考虑风电场内机组分群的功率预测模型,对于提高风电场短期功率预测的准确性和经济性具有重要意义。在风电功率预测及分析领域,分组聚类方法已得到广泛应用。文献[10]提出在神经网络预测方法

中引入基于划分的 k-means聚类算法,对包含气象和历史功率信息的样本进行分类,克服了神经网络的不稳定性和过拟合风险;文献[11]基于模型的自组织特征映射(SOM)聚类算法与 K 折验证相结合,将训练样本按照数据分布特征分类,提高了功率预测模型中不同基学习器的预测能力;文献[6,12]基于多种常用聚类方法建立风电机组分组模型,研究了不同分组方法在风电功率预测统计及物理模型中的适应性,显著提高了未分组模型的功率预测准确性。上述方法利用有限参数实现了风电场内机组分组,但仍难以全面反映不同机组的多峰、多模式特征。针对以上局限,结合风电机组运行数据的分布特 征 ,提 出 了 基 于 非 参 数 化 的 高 斯 混 合 模 型(Gaussian mixture model,GMM)聚类的风电场短期功 率 预 测 方 法 。 利 用 贝 叶 斯 信 息 准 则(Bayesian information criterion,BIC)判定最优聚类个数,依托基于径向基函数(radial basis function,RBF)神经网络的功率预测方法,验证所提聚类方法的有效性以及相较于其他聚类方法的优越性,为风电场短期功率预测方法的优化奠定了基础。

基于风电机组分组的功率预测流程图:

📚2 运行结果

2.1 Python

2.2 Matlab

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]王一妹,刘辉,宋鹏等.基于高斯混合模型聚类的风电场短期功率预测方法[J].电力系统自动化,2021,45(07):37-43.

🌈4 Matlab代码、数据、文章讲解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

测试|自动化测试(了解)

测试|自动化测试(了解) 1.什么是自动化测试☆☆☆☆ 自动化测试相当于把人工测试手段进行转换,让代码执行。 2.自动化测试的分类☆☆☆☆ 注:这里只是常见的自动化测试,并不全部罗列。 1.单元自动化测试 其中Java…

嵌入式硬件系统的基本组成

嵌入式硬件系统的基本组成 嵌入式系统的硬件是以包含嵌入式微处理器的SOC为核心,主要由SOC、总线、存储器、输入/输出接口和设备组成。 嵌入式微处理器 每个嵌入式系统至少包含一个嵌入式微处理器 嵌入式微处理器体系结构可采用冯.诺依曼(Von Neumann&…

前后端分离实现博客系统

文章目录 博客系统前言1. 前端1.1 登陆页面1.2 博客列表页面1.3 博客详情页面1.4 博客编辑页面 2. 后端2.1 项目部署2.1.1 创建maven项目2.1.2 引入依赖2.1.3 创建目录结构2.1.4 部署程序 2.2 逻辑设计2.2.1 数据库设计2.2.2 实体类设计2.2.3 Dao层设计2.2.3.1 BlogDao 2.2.4 D…

qt添加图标

1.添加资源 选择QtWidgetsApp.qrc文件打开 添加图标文件路径 添加图标文件 2.按钮添加图标 图标路径为:/res/res/swicth.jpg (1)代码设置图标 ui.pushButton_OPen->setIcon(QIcon(":/res/res/swicth.jpg")); (2)属…

apple pencil到底值不值得买?好用的iPad电容笔

随着ipad平板型号版本的不断更新,其的功能越来越多,现在它的性能已经可以和笔记本电脑相媲美了。而现在,随着技术的进步,IPAD已经不再是单纯的娱乐,而是一种功能强大的学习、绘画、工作等等。要增加生产效率&#xff0…

【数据结构与算法】归并排序

归并排序 归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而…

stm32内存杂记

从上图中可以看出SRAM空间用来存放:1.各个文件中声明和定义的全局变量、静态数据和常量;2.未初始化的全局变量;3.HEAP区;4.STACK区 这是在.map文件中,双击工程target打开 堆栈是处于以0x2000xx地址处的 EQU伪代码&…

学C的第三十一天【通讯录的实现】

相关代码gitee自取:C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第三十天【自定义类型:结构体、枚举、联合】_高高的胖子的博客-CSDN博客 通讯录需求: 实现一个通讯录, 通讯录中存放保存人的信息&#xff1…

华为鸿蒙4本周发布:官方海报大有玄机!告别“人工智障”!

一年一度的华为开发者大会2023(HDC.Together)将于8月4日至8月6日在东莞松山湖举办。相比去年,今年的华为开发者大会足足提前了三个月,而本次大会主角之一无疑是全新国产操作系统鸿蒙4(HarmonyOS 4)。 官方之前用了三个词来形容鸿蒙…

C#文件操作从入门到精通(1)——INI文件操作

点击这里:微软官方文档查看writePrivateProfileString函数定义 常见错误: 1、中文路径写入失败,为啥? 2、文件不是全路径,只有文件名也会写入失败: 3、GetLastError怎么使用? GetLastError错误代码含义: (0)-操作成功完成。 (1)-功能错误。 (2)- 系统找不到指定的文件…

3个命令定位CPU飙高

top 指令找出消耗CPU最厉害的那个进程的pid top -H -p 进程pid 找出耗用CPU资源最多的线程pid printf ‘0x%x\n’ 线程pid 将线程pid转换为16进制 结合jstack 找出哪个代码有问题 jstack 进程pid | grep 16进制的线程pid -A 多少行日志 jstack 进程pid | grep 16进制的线程…

C语言指针进阶-1

本篇文章带来 1. 字符指针 2. 数组指针 3. 指针数组的相关知识详细讲解! 如果您觉得文章不错,期待你的一键三连哦,你的鼓励是我创作的动力之源,让我们一起加油,一起奔跑,让我们顶峰相见!&#…

04 http连接处理(上)

基础知识&#xff1a;epoll、http报文格式、状态码和有限状态机 代码&#xff1a;对服务端处理http请求的全部流程进行简要介绍&#xff0c;然后结合代码对http类及请求接收进行详细分析。 epoll epoll_create函数 #include <sys/epoll.h> int epoll_create(int size)…

【业务功能篇55】Springboot+easyPOI 导入导出

Apache POI是Apache软件基金会的开源项目&#xff0c;POI提供API给Java程序对Microsoft Office格式档案读和写的功能。 Apache POI 代码实现复杂&#xff0c;学习成本较高。 Easypoi 功能如同名字easy,主打的功能就是容易,让一个没见接触过poi的人员 就可以方便的写出Excel导出…

【计算机网络】408统考2014年题36

题目描述 【2014年题36】主机甲与主机乙之间使用后退N帧(GBN)协议传输数据&#xff0c;甲的发送窗口尺寸为1000&#xff0c;数据帧长为1000字节&#xff0c;信道带宽为100Mbps&#xff0c;乙每收到一个数据帧就立即利用一个短帧&#xff08;忽略其传输延迟&#xff09;进行确认…

Banana Pi BPI-KVM – 基于 Rockchip RK3568 SoC 的 KVM over IP 解决方案

Banana Pi 已经开始开发基于 Rockchip RK3568 SoC 的 BPI-KVM 盒&#xff0c;但它不是迷你 PC&#xff0c;而是 KVM over IP 解决方案&#xff0c;旨在远程控制另一台计算机或设备&#xff0c;就像您在现场一样&#xff0c;例如能够打开和关闭连接的设备、访问 BIOS 等。 商业…

eda、gnm、anm究竟是个啥?

安装prody pip install prody -i https://pypi.tuna.tsinghua.edu.cn/simpleeda、anm、gnm eda(essential dynamics analysis) 另一个名字PCA(Principal Component Analysis) 或 NMA(Normal Mode Analysis)。 eda分析可以帮助人们理解生物大分子基本的运动模式和构象变化。…

面试典中典之线程池的七大参数

文章目录 一、七大元素解释1.corePoolSize&#xff08;核心线程数&#xff09;&#xff1a;2.maximumPoolSize&#xff08;最大线程数&#xff09;&#xff1a;3.keepAliveTime&#xff08;线程空闲时间&#xff09;&#xff1a;4.unit&#xff08;时间单位&#xff09;&#x…

Elasticsearch:使用 ELSER 释放语义搜索的力量:Elastic Learned Sparse EncoderR

问题陈述 在信息过载的时代&#xff0c;根据上下文含义和用户意图而不是精确的关键字匹配来查找相关搜索结果已成为一项重大挑战。 传统的搜索引擎通常无法理解用户查询的语义上下文&#xff0c;从而导致相关性较低的结果。 解决方案&#xff1a;ELSER Elastic 通过其检索模型…

Web3 叙述交易所授权置换概念 编写transferFrom与approve函数

前文 Web3带着大家根据ERC-20文档编写自己的第一个代币solidity智能合约 中 我们通过ERC-20一种开发者设计的不成文规定 也将我们的代币开发的很像个样子了 我们打开 ERC-20文档 我们transfer后面的函数就是transferFrom 这个也是 一个账号 from 发送给另一个账号 to 数量 val…