《视觉SLAM十四讲》-- 建图

11 建图

11.1 概述

(1)地图的几类用处:

  • 定位:
  • 导航:机器人在地图中进行路径规划;
  • 避障
  • 重建
  • 交互:人与地图之间的互动

(2)几类地图

  • 稀疏地图
  • 稠密地图
  • 语义地图

在这里插入图片描述

11.2 单目稠密重建

11.2.1 立体视觉

(1)稠密重建中,我们需要知道每个像素(或大部分像素)的距离,对此有以下几种方案:

  • 使用单目相机,估计相机运动,并且三角化计算像素的距离;
  • 使用双目相机,利用左右目的视差计算像素的距离;
  • 使用 RGB-D 相机直接获取像素距离。

前两种方式称为立体视觉,在 RGB-D 相机无法很好应用的室外、大型场景中,仍有较好的表现。

11.2.2 极线搜索与块匹配

对于一个单目相机,假设我们观察测到了某个像素 p 1 p_1 p1,显然,还是无法确定它的深度信息,但这个像素对应的空间点应该分布在某条射线上。从另一个视角,这条线的投影也形成了图像平面上的一条线,称为 极线。当知道两个相机之间的运动时,这条极线也是可以确定的。但问题是,极线上的哪个点才是 p 1 p_1 p1 对应的点呢?

在这里插入图片描述

p 1 p_1 p1 周围取 w × w w \times w w×w 大小的像素块,在极线上也取相同大小的块,依次进行比较,直至找到 p 2 p_2 p2,这就是所谓的 块匹配。当然这种方法的前提是 图像块灰度不变性,相较于像素灰度不变性,假设更强了。

p 1 p_1 p1 周围的像素块记为 A ∈ R w × w \boldsymbol{A} \in \mathbb{R}^{w \times w} ARw×w,把极线上的 n n n 个小块记为 B i , i = 1 , 2 , . . . , n \boldsymbol{B}_i,i=1,2,...,n Bii=1,2,...,n,计算二者之间的差异:

  • SAD(Sum of Absolute Difference),两个小块的差的绝对值之和:

S ( A , B ) S A D = ∑ i , j ∣ A ( i , j ) − B ( i , j ) ∣ (11-1) S(\boldsymbol{A},\boldsymbol{B})_{\mathrm{SAD}}=\sum_{i,j}|\boldsymbol{A}(i,j)-\boldsymbol{B}(i,j)| \tag{11-1} S(A,B)SAD=i,jA(i,j)B(i,j)(11-1)

  • SSD(Sum of Squared Distance),即平方和:

S ( A , B ) S S D = ∑ i , j ( A ( i , j ) − B ( i , j ) ) 2 (11-2) S(\boldsymbol{A},\boldsymbol{B})_{\mathrm{SSD}}=\sum_{i,j}(\boldsymbol{A}(i,j)-\boldsymbol{B}(i,j))^2 \tag{11-2} S(A,B)SSD=i,j(A(i,j)B(i,j))2(11-2)

  • NCC(Normalized Cross Correlation),归一化互相关,计算两个小块的相关性:

S ( A , B ) N C C = ∑ i , j A ( i , j ) B ( i , j ) ∑ i , j A ( i , j ) 2 ∑ i , j B ( i , j ) 2 (11-3) S(\boldsymbol{A}, \boldsymbol{B})_{\mathrm{NCC}}=\frac{\sum_{i, j} \boldsymbol{A}(i, j) \boldsymbol{B}(i, j)}{\sqrt{\sum_{i, j} \boldsymbol{A}(i, j)^{2} \sum_{i, j} \boldsymbol{B}(i, j)^{2}}} \tag{11-3} S(A,B)NCC=i,jA(i,j)2i,jB(i,j)2 i,jA(i,j)B(i,j)(11-3)

相关性越接近于 0 表示越不相似,接近 1 表示相似。

现在,我们在极线上计算了 A \boldsymbol{A} A 与每一个 B i \boldsymbol{B}_i Bi 的相似性度量。这里假设使用 NCC 进行度量,那么,将得到一个沿极线的 NCC分布。我们将使用概率分布描述深度值,而非某个单一数值。于是,问题转化为在不断对不同图像进行极线搜索时,我们估计的深度分布将发生怎样的变化———这就是所谓的 深度滤波器

在这里插入图片描述

11.2.3 高斯分布的深度滤波器

像素点深度的估计,也是一个状态估计问题,于是有滤波器和非线性优化两种方式。但由于 SLAM 实时性要求和算力的限制,一般在建图时采用计算量较小的滤波器进行优化。

假设深度 d d d 符合 高斯分布(也可能是其他分布):

P ( d ) = N ( μ , σ 2 ) (11-4) P(d)=N(\mu, \sigma^2) \tag{11-4} P(d)=N(μ,σ2)(11-4)

每当新的数据到来,我们都会观测它的深度,假设它也符合高斯分布:

P ( d o b s ) = N ( μ o b s , σ o b s 2 ) (11-5) P(d_{\mathrm{obs}})=N(\mu_{\mathrm{obs}}, \sigma_{\mathrm{obs}}^2) \tag{11-5} P(dobs)=N(μobs,σobs2)(11-5)

根据观测到的数据更新原先 d d d 的分布,也就是两个分布相乘,得到融合后的分布 N ( μ f u s e , σ f u s e 2 ) N(\mu_{\mathrm{fuse}}, \sigma_{\mathrm{fuse}}^2) N(μfuse,σfuse2),即

μ fuse  = σ o b s 2 μ + σ 2 μ o b s σ 2 + σ o b s 2 , σ fuse  2 = σ 2 σ o b s 2 σ 2 + σ o b s 2 (11-6) \mu_{\text {fuse }}=\frac{\sigma_{\mathrm{obs}}^{2} \mu+\sigma^{2} \mu_{\mathrm{obs}}}{\sigma^{2}+\sigma_{\mathrm{obs}}^{2}}, \quad \sigma_{\text {fuse }}^{2}=\frac{\sigma^{2} \sigma_{\mathrm{obs}}^{2}}{\sigma^{2}+\sigma_{\mathrm{obs}}^{2}} \tag{11-6} μfuse =σ2+σobs2σobs2μ+σ2μobs,σfuse 2=σ2+σobs2σ2σobs2(11-6)

现在关键在于计算 μ o b s \mu_{\mathrm{obs}} μobs σ o b s 2 \sigma_{\mathrm{obs}}^2 σobs2。假设我们找到了 p 1 \boldsymbol{p}_1 p1 对应的点 p 2 \boldsymbol{p}_2 p2,从而观测到了 p 1 \boldsymbol{p}_1 p1 的深度,认为 p 1 \boldsymbol{p}_1 p1 对应的三维点为 P \boldsymbol{P} P。记 O 1 P \boldsymbol{O_1P} O1P p \boldsymbol{p} p O 1 O 2 \boldsymbol{O_1 O_2} O1O2 为相机平移 t \boldsymbol{t} t O 2 P \boldsymbol{O_2P} O2P a \boldsymbol{a} a,两个夹角分别为 α \alpha α β \beta β。现在考虑极线 l 2 l_2 l2 上存在一个像素大小的误差,使点 p 2 \boldsymbol{p}_2 p2 变为 p 2 ′ \boldsymbol{p}_2' p2,使 β \beta β 角变为 β ′ \beta ' β。我们要考虑的是,这个像素误差会导致距离 p \boldsymbol{p} p p ′ \boldsymbol{p'} p 产生多大差距。

在这里插入图片描述

根据几何关系,

a = p − t \boldsymbol{a}=\boldsymbol{p}-\boldsymbol{t} a=pt

α = arccos ⁡ ⟨ p , t ⟩ \alpha=\arccos \langle\boldsymbol{p}, \boldsymbol{t}\rangle α=arccosp,t

β = arccos ⁡ ⟨ a , − t ⟩ (11-7) \beta=\arccos \langle\boldsymbol{a}, \boldsymbol{-t}\rangle \tag{11-7} β=arccosa,t(11-7)

p 2 \boldsymbol{p}_2 p2 扰动一个像素,使 β \beta β 变为 β ′ \beta ' β,根据几何关系

β ′ = arccos ⁡ ⟨ O 2 p 2 ′ , − t ⟩ \beta'=\arccos \langle\boldsymbol{O_2p_2'}, \boldsymbol{-t}\rangle β=arccosO2p2,t

γ = π − α − β ′ (11-8) \gamma=\pi-\alpha-\beta' \tag{11-8} γ=παβ(11-8)

由正弦定理

∥ p ′ ∥ = ∥ t ∥ sin ⁡ β ′ sin ⁡ γ (11-9) \|\boldsymbol{p'}\|=\|\boldsymbol{t}\| \frac{\sin\beta'}{\sin \gamma} \tag{11-9} p=tsinγsinβ(11-9)

这样,我们就确定了由单个像素的不确定引起的深度不确定性,如果认为极线搜索的块匹配仅有一个像素的误差,那么可以设

σ o b s = ∥ p ∥ − ∥ p ′ ∥ (11-10) \sigma_{\mathrm{obs}}=\|\boldsymbol{p}\|-\|\boldsymbol{p'}\| \tag{11-10} σobs=pp(11-10)

当极线搜索的不确定性大于一个像素时,可按此推导放大这个不确定性。当不确定性小于某个阈值时,就可认为深度数据收敛。

因此,估计稠密深度的完整过程为:

① 假设所有的像素深度都满足某个初始的高斯分布;
② 当新数据产生时,通过极线搜索和块匹配确定投影点的位置;
③ 根据几何关系计算三角化后的深度及不确定性;
④ 将当前观测融合进上一次估计中,若收敛则停止,否则返回第二步。

需要注意的是,这里的深度是指 O 1 P O_1P O1P 的长度,而针孔相机的深度是指像素的 z z z 值。

11.3 实践:单目稠密重建

11.4 RGB-D 稠密建图

(1)点云:直接由 RGB-D 图像生成,不需要额外处理。

(2)网格/面片

(3)八叉树地图

(4)TSDF

11.4.1 八叉树地图

点云有几个明显的缺点:一是规模太大,有很多无效信息,占据大量空间;二是无法处理运动的物体。因此提出了一种灵活的、可压缩的、能随时更新的地图形式:八叉树地图(Octo-tree)。

在这里插入图片描述

左图显示了一个大立方体不断被均分成八块,直到变为最小的块为止。于是,可以将整个大方块看做根节点,最小的块看做叶子结点,当由下一层节点往上走一层时,地图体积就扩大八倍。当某个方块的所有子节点都被占据或都不被占据时,就没必要展开这个节点,例如地图开始为空白,就只需要一个根节点,而不需要完整的树,所以说八叉树比点云更节省空间。

用概率的形式来表达节点是否被占据,比如初始值为 0.5,如果不断观测到它被占据,则值不断增大;如果不断观测到它是空白,则不断减小。当然,如果这个值不断增大或减小,就可能超出 [ 0 , 1 ] [0,1] [0,1] 之外,因此,我们采用 概率对数值 来描述。设 y ∈ R y\in \mathbb{R} yR 为概率对数值, x x x 为 0~1 的概率,定义

y = l o g i t ( x ) = log ⁡ ( x 1 − x ) (11-11) y=\mathrm{logit}(x)=\log(\frac{x}{1-x}) \tag{11-11} y=logit(x)=log(1xx)(11-11)

其反变换为:

x = l o g i t − 1 ( y ) = exp ⁡ ( y ) exp ⁡ ( y ) + 1 (11-12) x=\mathrm{logit}^{-1}(y)=\frac{\exp(y)}{\exp(y)+1} \tag{11-12} x=logit1(y)=exp(y)+1exp(y)(11-12)

可以看出,当 y y y − ∞ -\infty + ∞ +\infty + 时, x x x 范围为 0~1,当 y y y 取 0 时, x x x 取 0.5。因此,不妨用 y y y 来表达节点是否被占据,再将其转换为概率 x x x 即可。假设某节点 n n n,观测数据为 z z z,那么从开始到 t t t 时刻该节点的概率对数值为 L ( n ∣ z 1 : t ) L(n|z_{1:t}) L(nz1:t) t + 1 t+1 t+1 时刻为

L ( n ∣ z 1 : t + 1 ) = L ( n ∣ z 1 : t − 1 ) + L ( n ∣ z t ) (11-13) L(n|z_{1:t+1})=L(n|z_{1:t-1})+L(n|z_{t}) \tag{11-13} L(nz1:t+1)=L(nz1:t1)+L(nzt)(11-13)

将其写成概率形式(也就是 x x x),

P ( n ∣ z 1 : T ) = [ 1 + 1 − P ( n ∣ z T ) P ( n ∣ z T ) 1 − P ( n ∣ z 1 : T − 1 ) P ( n ∣ z 1 : T − 1 ) P ( n ) 1 − P ( n ) ] − 1 (11-14) P\left(n \mid z_{1: T}\right)=\left[1+\frac{1-P\left(n \mid z_{T}\right)}{P\left(n \mid z_{T}\right)} \frac{1-P\left(n \mid z_{1: T-1}\right)}{P\left(n \mid z_{1: T-1}\right)} \frac{P(n)}{1-P(n)}\right]^{-1} \tag{11-14} P(nz1:T)=[1+P(nzT)1P(nzT)P(nz1:T1)1P(nz1:T1)1P(n)P(n)]1(11-14)

有了对数概率,就可根据 RGB-D 数据更新八叉树地图。假设在 RGB-D 图像中某个像素带有深度 d d d,就说明:在深度值对应的空间点上观察到了一个占据数据,并且,从相机光心出发到这个点的线段上应该是没有物体的(否则被遮挡)

11.4.2 TSDF 地图和 Fusion 系列

实时三维重建

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/153983.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Jira导出csv最大限度是1000的问题

JIRA为了防止过多影响性能, 设置了导出CSV的上线为1000,影响了搜索结果导出以及RestAPI。 可以通过以下配置参数修改此限制: 通过JIRA管理界面的"高级设置 “设置以下参数 系统管理 > 系统 > 一般设置>高级设置找到 jira.sea…

034、test

之——全纪录 目录 之——全纪录 杂谈 正文 1.下载处理数据 2.数据集概览 3.构建自定义dataset 4.初始化网络 5.训练 杂谈 综合方法试一下。 leaves 1.下载处理数据 从官网下载数据集:Classify Leaves | Kaggle 解压后有一个图片集,一个提交示…

Codeforces Round 910 (Div. 2) --- B-E 补题记录

B - Milena and Admirer Problem - B - Codeforces 题目大意: 现在给出一个无序序列,你可以使用任意次操作将这个无序序列修改为不递减序列,操作为你可以使用两个数a和b来替换ai,序列就变为了 ai-1, a,…

【C++ Primer Plus学习记录】for循环

很多情况下都需要程序执行重复的任务&#xff0c;C中的for循环可以轻松地完成这种任务。 我们来从程序清单5.1了解for循环所做的工作&#xff0c;然后讨论它是如何工作的。 //forloop.cpp #if 1 #include<iostream> using namespace std;int main() {int i;for (i 0; …

Ubuntu文件系统损坏:The root filesystem on /dev/sda5 requires a manual fsck

前言 Ubuntu在启动过程中&#xff0c;经常会遇到一些开故障&#xff0c;导致设备无法正常开机&#xff0c;例如文件系统损坏等。 故障描述 Ubuntu系统启动过程中&#xff0c;出现以下文件系统损坏错误&#xff1a; 产生原因 该故障是由磁盘检测不能通过导致&#xff0c;可能是因…

代码随想录 11.21 || 单调栈 LeetCode 84.柱状图中最大的矩形

84.柱状图中最大的矩形 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1。求在柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。和 42.接雨水 类似&#xff0c;在由数组组成的柱状图中&#xff0c;根据条件求解。 图…

NLP:使用 SciKit Learn 的文本矢量化方法

一、说明 本文是使用所有 SciKit Learns 预处理方法生成文本数字表示的深入解释和教程。对于以下每个矢量化器&#xff0c;将给出一个简短的定义和实际示例&#xff1a;one-hot、count、dict、TfIdf 和哈希矢量化器。 SciKit Learn 是一个用于机器学习项目的广泛库&#xff0c;…

官宣!Sam Altman加入微软,OpenAI临时CEO曝光,回顾董事会‘’政变‘’始末

11月20日下午&#xff0c;微软首席执行官Satya Nadella在社交平台宣布&#xff0c;“微软仍然致力于与 OpenAI的合作伙伴关系。同时欢迎Sam Altman 和 Greg Brockman 及其团队加入微软&#xff0c;领导一个全新的AI研究团队”。 Sam第一时间对这个消息进行了确认。 此外&…

Dart笔记:glob 文件系统遍历

Dart笔记 文件系统遍历工具&#xff1a;glob 模块 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/13442…

2023 羊城杯 final

前言 笔者并未参加此次比赛, 仅仅做刷题记录. 题目难度中等偏下吧, 看你记不记得一些利用手法了. arrary_index_bank 考点: 数组越界 保护: 除了 Canary, 其他保护全开, 题目给了后门 漏洞点: idx/one 为 int64, 是带符号数, 所以这里存在向上越界, 并且 buf 为局部变量,…

ROS1余ROS2共存的一键安装(全)

ROS1的安装&#xff1a; ROS的一键安装&#xff08;全&#xff09;_ros一键安装_牙刷与鞋垫的博客-CSDN博客 ROS2的安装 在开始这一部分的ROS2安装之前&#xff0c;是可以安装ROS1的&#xff0c;当然如果你只需要安装ROS2的话就执行从此处开始的代码即可 我是ubuntu20.4的版…

电力感知边缘计算网关产品设计方案-业务流程设计

1.工业数据通信流程 工业数据是由仪器仪表、PLC、DCS等工业生产加工设备提供的,通过以太网连接工业边缘计算网关实现实时数据采集。按照现有的通信组网方案,在理想通信状态下可以保证有效获取工业数据的真实性和有效性。 边缘计算数据通信框架图: 2.边缘计算数据处理方案 …

Linux驱动开发——块设备驱动

目录 一、 学习目标 二、 磁盘结构 三、块设备内核组件 四、块设备驱动核心数据结构和函数 五、块设备驱动实例 六、 习题 一、 学习目标 块设备驱动是 Linux 的第二大类驱动&#xff0c;和前面的字符设备驱动有较大的差异。要想充分理解块设备驱动&#xff0c;需要对系统…

高效开发与设计:提效Spring应用的运行效率和生产力 | 京东云技术团队

引言 现状和背景 Spring框架是广泛使用的Java开发框架之一&#xff0c;它提供了强大的功能和灵活性&#xff0c;但在大型应用中&#xff0c;由于Spring框架的复杂性和依赖关系&#xff0c;应用的启动时间和性能可能会受到影响。这可能导致开发过程中的迟缓和开发效率低下。优…

Golang基础-面向过程篇

文章目录 基本语法变量常量函数import导包匿名导包 指针defer静态数组动态数组(slice)定义方式slice追加元素slice截取 map定义方式map使用方式 基本语法 go语言输出hello world的语法如下 package mainimport ("fmt""time" )func main() {fmt.Println(&…

循环链表2

循环链表的实现 对于数据结构中所有的结构而言&#xff0c;每一次都是用之前初始化&#xff08;处理一开始的随机值&#xff09;一下&#xff0c; 用完销毁&#xff08;不管有没有malloc都能用&#xff0c;用了可以保证没有动态内存泄漏了&#xff09;一下 而在C里面&#x…

Dubbo开发系列

一、概述 以上是 Dubbo 的工作原理图&#xff0c;从抽象架构上分为两层&#xff1a;服务治理抽象控制面 和 Dubbo 数据面 。 服务治理控制面。服务治理控制面不是特指如注册中心类的单个具体组件&#xff0c;而是对 Dubbo 治理体系的抽象表达。控制面包含协调服务发现的注册中…

PLC设备相关常用英文单词(一)

PLC设备相关常用英文单词&#xff08;一&#xff09; Baud rate 波特率Bus 总线Binary 二进制Configuration 组态Consistent data 一致性数据Counter 计数器Cycle time 循环时间Conveyor 传送Device names 设备名称Debug 调试Download 下载Expand 扩展Fix 固定Flow 流量Functio…

【LeetCode:689. 三个无重叠子数组的最大和 | 序列dp+前缀和】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…