【小呆的力学笔记】有限元专题之循环对称结构有限元原理

文章目录

      • 1. 循环对称问题的提出
      • 2. 循环对称条件
        • 2.1 节点位移的循环对称关系
        • 2.2 节点内力的循环对称关系
      • 3. 在平衡方程中引入循环对称条件

1. 循环对称问题的提出

许多工程结构都是其中某一扇面的n次周向重复,也就是是周期循环对称结构。如果弹性体的几何形状、约束情况以及所受的外部载荷都是对称于某一轴,则所有的应力、应变和位移也就对称于对称轴,那么这就是循环对称问题。典型的有发动机轮盘受离心力载荷下的应力分析,轮盘结构如下图1所示。观察轮盘结构,不难发现轮盘是扇形段重复多次的结构,那么离心力是周期循环对称的,并假设轮盘温度场是沿周向均布的,那么轮盘的应力应变应该也是周期循环对称的。

在这里插入图片描述

对于循环对称问题,事实上可以通过仅对某一扇面进行有限元模型就能获得正确的应力、应变和位移分析结果,当然需要在有限元算法中引入特殊的条件。

2. 循环对称条件

2.1 节点位移的循环对称关系

在循环对称问题中,需要引入柱坐标系,来给定循环对称条件。如下图,其中 x y z xyz xyz是笛卡尔坐标系, r θ z r\theta z rθz是柱坐标系,结构是典型轮盘的某一扇段。

在这里插入图片描述

在该循环对称问题中,扇面的面A的节点 i i i和面B的对应节点 j j j在柱坐标系 r θ z r\theta z rθz应该具有相同的坐标,同时应该也具备相同的位移变量。假设节点 i i i和节点 j j j分别属于面A和面B的一对对应节点,见下面示意图,那么其柱坐标下的位移变量应该满足下式关系:
u r i = u r j u θ i = u θ j u z i = u z j u_{ri}=u_{rj}\\u_{\theta i}=u_{\theta j}\\u_{zi}=u_{zj} uri=urjuθi=uθjuzi=uzj
在这里插入图片描述

节点 i i i在柱坐标系下的位移与在笛卡尔坐标系下的位移进行变换,具体的变换关系如下

− u r i sin ⁡ α − u θ i cos ⁡ α = u x i u r i cos ⁡ α − u θ i sin ⁡ α = u y i u z i = u z i -u_{ri}\sin\alpha-u_{\theta i}\cos\alpha=u_{xi}\\ u_{ri}\cos\alpha-u_{\theta i}\sin\alpha=u_{yi}\\u_{zi}=u_{zi} urisinαuθicosα=uxiuricosαuθisinα=uyiuzi=uzi
写成矩阵形式
[ u x i u y i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r i u θ i u z i ] \begin{bmatrix} u_{xi}\\u_{yi}\\u_{zi} \end{bmatrix}= \begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{ri}\\u_{\theta i}\\u_{zi} \end{bmatrix} uxiuyiuzi = sinαcosα0cosαsinα0001 uriuθiuzi
节点 j j j在柱坐标系下的位移与在笛卡尔坐标系下的位移进行变换,具体的变换关系如下
u r j sin ⁡ β − u θ j cos ⁡ β = u x j u r j cos ⁡ β + u θ j sin ⁡ β = u y j u z j = u z j u_{rj}\sin\beta-u_{\theta j}\cos\beta=u_{xj}\\ u_{rj}\cos\beta+u_{\theta j}\sin\beta=u_{yj}\\ u_{zj}=u_{zj} urjsinβuθjcosβ=uxjurjcosβ+uθjsinβ=uyjuzj=uzj
写成矩阵形式
[ u x j u y j u z j ] = [ sin ⁡ β − cos ⁡ β 0 cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u r j u θ j u z j ] \begin{bmatrix}u_{xj}\\u_{yj}\\u_{zj}\end{bmatrix} =\begin{bmatrix} \sin\beta & -\cos\beta & 0\\ \cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{rj}\\u_{\theta j}\\u_{zj} \end{bmatrix} uxjuyjuzj = sinβcosα0cosβsinβ0001 urjuθjuzj
那么
[ u r j u θ j u z j ] = [ sin ⁡ β cos ⁡ β 0 − cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] \begin{bmatrix}u_{rj}\\u_{\theta j}\\u_{zj}\end{bmatrix} =\begin{bmatrix} \sin\beta & \cos\beta & 0\\ -\cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} urjuθjuzj = sinβcosα0cosβsinβ0001 uxjuyjuzj
由于
[ u r i u θ i u z i ] = [ u r j u θ j u z j ] \begin{bmatrix}u_{ri}\\u_{\theta i}\\u_{zi}\end{bmatrix} =\begin{bmatrix}u_{rj}\\u_{\theta j}\\u_{zj}\end{bmatrix} uriuθiuzi = urjuθjuzj
那么
[ u x i u y i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r i u θ i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r j u θ j u z j ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ sin ⁡ β cos ⁡ β 0 − cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] = [ − sin ⁡ α sin ⁡ β + cos ⁡ α cos ⁡ β − sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β 0 cos ⁡ α sin ⁡ β + sin ⁡ α cos ⁡ β cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] = [ cos ⁡ ( α + β ) − sin ⁡ ( α + β ) 0 sin ⁡ ( α + β ) cos ⁡ ( α + β ) 0 0 0 1 ] [ u x j u y j u z j ] = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) 0 sin ⁡ ( θ ) cos ⁡ ( θ ) 0 0 0 1 ] [ u x j u y j u z j ] = [ θ 1 ] [ u x j u y j u z j ] \begin{bmatrix}u_{xi}\\u_{yi}\\u_{zi}\end{bmatrix} =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{ri}\\u_{\theta i}\\u_{zi} \end{bmatrix} =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{rj}\\u_{\theta j}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} \sin\beta & \cos\beta & 0\\ -\cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} \\ =\begin{bmatrix} -\sin\alpha\sin\beta+\cos\alpha\cos\beta & -\sin\alpha\cos\beta-\cos\alpha\sin\beta & 0\\ \cos\alpha\sin\beta+\sin\alpha\cos\beta & \cos\alpha\cos\beta-\sin\alpha\sin\beta &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) & 0\\ \sin(\alpha+\beta) & \cos(\alpha+\beta) &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} uxiuyiuzi = sinαcosα0cosαsinα0001 uriuθiuzi = sinαcosα0cosαsinα0001 urjuθjuzj = sinαcosα0cosαsinα0001 sinβcosα0cosβsinβ0001 uxjuyjuzj = sinαsinβ+cosαcosβcosαsinβ+sinαcosβ0sinαcosβcosαsinβcosαcosβsinαsinβ0001 uxjuyjuzj = cos(α+β)sin(α+β)0sin(α+β)cos(α+β)0001 uxjuyjuzj = cos(θ)sin(θ)0sin(θ)cos(θ)0001 uxjuyjuzj =[θ1] uxjuyjuzj

2.2 节点内力的循环对称关系

扇形段I除了节点位移存在循环对称关系,剩余扇形对扇形段I的节点力也存在循环对称关系。典型的扇形段相互作用关系见下图,其中扇形段I是分析对象,扇形段II和扇形段III对扇形段I有相互作用。

在这里插入图片描述
其中扇形段I、II、III是重复扇形段, i i i i ′ i^{'} i i ′ ′ i^{''} i′′是一组对应周期循环节点, j j j j ′ j^{'} j j ′ ′ j^{''} j′′是一组对应周期循环节点。
其中 j ′ j^{'} j i i i的作用力为 f r i f_{ri} fri f θ i f_{\theta i} fθi f z i f_{zi} fzi j j j i ′ ′ i^{''} i′′的作用力为 f r i ′ ′ f_{ri^{''}} fri′′ f θ i ′ ′ f_{\theta i^{''}} fθi′′ f z i ′ ′ f_{zi^{''}} fzi′′,从周期循环对称特征定义,可知
f r i = f r i ′ ′ f θ i = f θ i ′ ′ f z i = f z i ′ ′ f_{ri}=f_{ri^{''}}\\ f_{\theta i}=f_{\theta i^{''}}\\ f_{zi}=f_{zi^{''}} fri=fri′′fθi=fθi′′fzi=fzi′′
那么, i ′ ′ i^{''} i′′ j j j的作用力 f r j f_{rj} frj f θ j f_{\theta j} fθj f z j f_{zj} fzj,存在如下关系式
f r i = − f r j f θ i = − f θ j f z i = − f z j f_{ri}=-f_{rj}\\ f_{\theta i}=-f_{\theta j}\\ f_{zi}=-f_{zj} fri=frjfθi=fθjfzi=fzj
注:上述节点力均在柱坐标系下。
参照上节节点位移的转换关系推导过程,不难推得在上述节点力关系式在笛卡尔坐标系下的表达式
[ f x i f y i f z i ] = − [ θ 1 ] [ f x j f y j f z j ] \begin{bmatrix}f_{xi}\\f_{yi}\\f_{zi}\end{bmatrix}=-\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} f_{xj}\\f_{yj}\\f_{zj} \end{bmatrix} fxifyifzi =[θ1] fxjfyjfzj

3. 在平衡方程中引入循环对称条件

若某循环结构包含一对循环对称节点 i i i j j j,不失一般性,平衡方程可以写成下式

[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ k i 1 k i 2 ⋯ k i i ⋯ k i j ⋯ k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ F i + f i ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{i1}&k_{i2}&\cdots&k_{ii}&\cdots&k_{ij}&\cdots&k_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}u_1\\u_2\\\vdots\\u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_i+f_i\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21ki1kj1kn1k12k22ki2kj2kn2k1ik2ikiikjiknik1jk2jkijkjjknjk1nk2nkinkjnknn u1u2uiujun = R1+F1F2Fi+fiFj+fjFn
式中 u 1 u_1 u1为模型的位移约束,有 u 1 = u ‾ 1 u_1=\overline u_1 u1=u1 R 1 R_1 R1为支反力; F i , i = 1 , ⋯ F_i,i=1,\cdots Fii=1,为节点外载荷, f i 、 f j f_i、f_j fifj为其他扇形段对扇形段I的作用力,这里引入循环对称条件,

[ f i ] = − [ θ 1 ] [ f j ] \begin{bmatrix}f_{i}\end{bmatrix}=-\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} f_{j}\end{bmatrix} [fi]=[θ1][fj]
上面平衡方程变成如下形式
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ k i 1 k i 2 ⋯ k i i ⋯ k i j ⋯ k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ F i − θ f j ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{i1}&k_{i2}&\cdots&k_{ii}&\cdots&k_{ij}&\cdots&k_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\ u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_i-\theta f_j\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21ki1kj1kn1k12k22ki2kj2kn2k1ik2ikiikjiknik1jk2jkijkjjknjk1nk2nkinkjnknn u1u2uiujun = R1+F1F2FiθfjFj+fjFn
进一步,用 θ T \theta^T θT左乘第 i i i行,则
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\ u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21θTki1kj1kn1k12k22θTki2kj2kn2k1ik2iθTkiikjiknik1jk2jθTkijkjjknjk1nk2nθTkinkjnknn u1u2uiujun = R1+F1F2θTFifjFj+fjFn
将第 i i i行加到第 j j j行,上式进一步变换为
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i + k j i ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}+k_{ji}&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1ik2iθTkiiθTkii+kjiknik1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2uiujun = R1+F1F2θTFifjFj+θTFiFn
将位移循环对称条件引入上式中
[ u i ] = [ θ 1 ] [ u j ] \begin{bmatrix}u_{i}\end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix}u_{j}\end{bmatrix} [ui]=[θ1][uj]
那么平衡方程变换为
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i + k j i ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ θ u j ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}+k_{ji}&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\\theta u_j\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1ik2iθTkiiθTkii+kjiknik1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2θujujun = R1+F1F2θTFifjFj+θTFiFn
θ \theta θ提出来,右乘到第 i i i列,那么上式变为
[ k 11 k 12 ⋯ k 1 i θ ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i θ ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i θ ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i θ + k j i θ ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i θ ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u j ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}\theta&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}\theta&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}\theta&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}\theta&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_j\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1iθk2iθθTkiiθθTkiiθ+kjiθkniθk1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2ujujun = R1+F1F2θTFifjFj+θTFiFn

在上式中用缩减节点的位移列阵替换全节点位移列阵,即用 [ u ‾ 1 , u 2 , ⋯ , u i − 1 , u i + 1 , ⋯ , u j , ⋯ , u n ] \begin{bmatrix}\overline u_1,u_2,\cdots,u_{i-1},u_{i+1},\cdots,u_j,\cdots,u_n \end{bmatrix} [u1,u2,,ui1,ui+1,,uj,,un]替换 [ u ‾ 1 , u 2 , ⋯ , u i − 1 , u j , u i + 1 , ⋯ , u j , ⋯ , u n ] \begin{bmatrix}\overline u_1,u_2,\cdots,u_{i-1},u_{j},u_{i+1},\cdots,u_j,\cdots,u_n \end{bmatrix} [u1,u2,,ui1,ujui+1,,uj,,un]
那么相应的要将位移列阵中第 i i i行归属 u j u_j uj合并到第 j j j列,那么平衡方程变换为

[ k 11 k 12 ⋯ k 1 i − 1 k 1 i + 1 ⋯ k 1 i θ + k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i − 1 k 2 i + 1 ⋯ k 2 i θ + k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i − 1 θ T k i i + 1 ⋯ θ T k i i θ + θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i − 1 + k j i − 1 θ T k i i + 1 + k j i + 1 ⋯ θ T k i i θ + k j i θ + θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i − 1 k n i + 1 ⋯ k n i θ + k n j ⋯ k n n ] n × ( n − 1 ) [ u ‾ 1 u 2 ⋮ u i − 1 u i + 1 ⋮ u j ⋮ u n ] ( n − 1 ) × 1 = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i-1}&k_{1i+1}&\cdots&k_{1i}\theta +k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i-1}&k_{2i+1}&\cdots&k_{2i}\theta+k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii-1}&\theta^Tk_{ii+1} &\cdots&\theta^Tk_{ii}\theta+\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii-1}+k_{ji-1}&\theta^Tk_{ii+1} +k_{ji+1}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta+\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni-1}&k_{ni+1}&\cdots&k_{ni}\theta+k_{nj}&\cdots&k_{nn}\\\end{bmatrix}_{n\times (n-1)} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_{i-1}\\u_{i+1}\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}_{(n-1)\times 1}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1i1k2i1θTkii1θTkii1+kji1kni1k1i+1k2i+1θTkii+1θTkii+1+kji+1kni+1k1iθ+k1jk2iθ+k2jθTkiiθ+θTkijθTkiiθ+kjiθ+θTkij+kjjkniθ+knjk1nk2nθTkinθTkin+kjnknn n×(n1) u1u2ui1ui+1ujun (n1)×1= R1+F1F2θTFifjFj+θTFiFn
事实上如果位移列阵自由度为 ( n − 1 ) (n-1) (n1),那么相应的方程也只需要 ( n − 1 ) (n-1) (n1)个,因此我们去掉第 i i i方程,那么平衡方程变成
[ k 11 k 12 ⋯ k 1 , i − 1 k 1 , i + 1 ⋯ k 1 i θ + k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 , i − 1 k 2 , i + 1 ⋯ k 2 i θ + k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k i − 1 , 1 k i − 1 , 2 ⋯ k i − 1 , i − 1 k i − 1 , i + 1 ⋯ k i − 1 , i θ + k i − 1 , j ⋯ k i − 1 , n k i + 1 , 1 k i + 1 , 2 ⋯ k i + 1 , i − 1 k i + 1 , i + 1 ⋯ k i + 1 , i θ + k i + 1 , j ⋯ k i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i , i − 1 + k j , i − 1 θ T k i , i + 1 + k j , i + 1 ⋯ θ T k i i θ + k j i θ + θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i − 1 k n i + 1 ⋯ k n i θ + k n j ⋯ k n n ] ( n − 1 ) × ( n − 1 ) [ u ‾ 1 u 2 ⋮ u i − 1 u i + 1 ⋮ u j ⋮ u n ] ( n − 1 ) × 1 = [ R 1 + F 1 F 2 ⋮ F i − 1 F i + 1 ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1,i-1}&k_{1,i+1}&\cdots&k_{1i}\theta +k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2,i-1}&k_{2,i+1}&\cdots&k_{2i}\theta+k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{i-1,1}&k_{i-1,2}&\cdots&k_{i-1,i-1}&k_{i-1,i+1} &\cdots &k_{i-1,i}\theta +k_{i-1,j}&\cdots&k_{i-1,n}\\ k_{i+1,1}&k_{i+1,2}&\cdots&k_{i+1,i-1}&k_{i+1,i+1} &\cdots &k_{i+1,i}\theta +k_{i+1,j}&\cdots&k_{i+1,n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{i,i-1}+k_{j,i-1}&\theta^Tk_{i,i+1} +k_{j,i+1}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta+\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni-1}&k_{ni+1}&\cdots&k_{ni}\theta+k_{nj}&\cdots&k_{nn}\\\end{bmatrix}_{(n-1)\times (n-1)} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_{i-1}\\u_{i+1}\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}_{(n-1)\times 1}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_{i-1}\\F_{i+1}\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21ki1,1ki+1,1θTki1+kj1kn1k12k22ki1,2ki+1,2θTki2+kj2kn2k1,i1k2,i1ki1,i1ki+1,i1θTki,i1+kj,i1kni1k1,i+1k2,i+1ki1,i+1ki+1,i+1θTki,i+1+kj,i+1kni+1k1iθ+k1jk2iθ+k2jki1,iθ+ki1,jki+1,iθ+ki+1,jθTkiiθ+kjiθ+θTkij+kjjkniθ+knjk1nk2nki1,nki+1,nθTkin+kjnknn (n1)×(n1) u1u2ui1ui+1ujun (n1)×1= R1+F1F2Fi1Fi+1Fj+θTFiFn
将上式写成分块矩阵形式
[ k 11 K 12 K 21 K 22 ] [ u ‾ 1 U 2 ] = [ R 1 + F 1 F ^ ] \begin{bmatrix}k_{11}&K_{12}\\K_{21}&K_{22} \end{bmatrix}\begin{bmatrix}\overline u_{1}\\U_{2} \end{bmatrix}=\begin{bmatrix}R_{1}+F_{1}\\ \hat F \end{bmatrix} [k11K21K12K22][u1U2]=[R1+F1F^]
将其展开
k 11 u ‾ 1 + K 12 U 2 = R 1 + F 1 K 21 u ‾ 1 + K 22 U 2 = F ^ k_{11}\overline u_{1}+K_{12}U_{2} = R_{1}+F_{1}\\ K_{21}\overline u_{1}+K_{22}U_{2}=\hat F k11u1+K12U2=R1+F1K21u1+K22U2=F^
那么 U 2 U_{2} U2可以从下式求解
U 2 = K 22 − 1 ( F ^ − K 21 u ‾ 1 ) U_{2}=K_{22}^{-1}(\hat F - K_{21}\overline u_{1}) U2=K221(F^K21u1)
那么,有
R 1 = k 11 u ‾ 1 + K 12 U 2 − F 1 R_{1}=k_{11}\overline u_{1}+K_{12}U_{2}-F_{1} R1=k11u1+K12U2F1
同时,在确定 u j u_{j} uj后,将其回代入下式
[ u i ] = [ θ 1 ] [ u j ] \begin{bmatrix}u_{i}\end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix}u_{j}\end{bmatrix} [ui]=[θ1][uj]
可以确定 u i u_{i} ui,那么就确定全部节点位移,带入平衡方程可以得到 f i 、 f j f_{i}、f_{j} fifj,解得所有未知量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152393.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【每日刷题——语音信号篇】

思考与练习 练习2.1 语音信号在产生的过程中,以及被感知的过程中,分别要经过人体的哪些器官? 1.产生过程: 肺部空气 → \rightarrow →冲击声带 → \rightarrow →通过声道(可以调节) → \rightarrow →…

IDEA自动注解设置(中文版)

IDEA自动注解设置 1、添加类自动注释 文件 - 设置 - 编辑器 - 文件和代码模板 - Include - File Header /** *description:TODO *author: ${USER} *create: ${DATE} ${TIME} */2、添加类方法自动注释 文件 - 设置 - 编辑器 - 实时模版 - …

沸点 | Ultipa 图数据库金融应用场景优秀案例首批入选,金融街论坛年会发布

为推进图数据库在金融行业的创新应用试点,近日,在2023金融街论坛年会“全球金融科技中心网络年会暨ZIBS北京论坛”上,北京前沿金融监管科技研究院发布了基于国际标准组织——国际关联数据基准委员会(LDBC)的《图数据库…

Unexpected WSL error

问题描述 启动 Docker Desktop 报错 Unexpected WSL error,报错完整信息如下: Docker Desktop - Unexpected WSL error An unexpected error was encountered while executing a WSL command, Commoncauses include access rights issues, which occur…

阿里云ack集群升级流程

最近一直在升级过期的ack 集群版本 从1.22升级到1.24.。 参考: 升级流程、方式及所需时间

AIGC ChatGPT4对Gbase数据库进行总结

ChatGPT4 用一个Prompt完成Gbase数据库的总结。 AIGC ChatGPT 职场案例 AI 绘画 与 短视频制作 PowerBI 商业智能 68集 数据库Mysql 8.0 54集 数据库Oracle 21C 142集 Office 2021实战应用 Python 数据分析实战, ETL Informatica 数据仓库案例实战 Excel 2021实操 …

微机原理_14

一、单项选择题(本大题共15小题,每小题3分,共45分。在每小题给出的四个备选项中,选出一个正确的答案。) 1,下面寻址方式的操作数不在存储器中的是() A. 堆栈寻址 B. 寄存器间址 C.寄存器寻址 D. 直接寻址 2,条件转移指令JNE的条件是() A. CF…

数据结构--字符串的模式匹配

案例导入概念 朴素(暴力)模式匹配算法 定位操作: 计算时间复杂度 总结

【Kingbase FlySync】命令模式:部署双轨并行,并实现切换同步

【Kingbase FlySync】命令模式:安装部署同步软件,实现Oracle到KES实现同步 双轨并行方案说明一.准备工作二.环境说明三.目标实操(1).准备安装环境Orcle服务器(Oracle40)1.上传所有工具包2.操作系统配置a.增加flysync 用户、设置密码b.配置环境变量c.调整limits.conf…

clickhouse分布式之弹性扩缩容的故事

现状 社区不支持喔,以后也不会有了。曾经尝试过,难道是是太难了,无法实现吗?因为他们企业版支持了,可能是利益相关吧,谁知道呢,毕竟开源也要赚钱,谁乐意一直付出没有回报呢。 社区…

Mistral 7B 比Llama 2更好的开源大模型 (四)

Mistral 7B在平衡高性能和保持大型语言模型高效的目标方面迈出了重要的一步。通过我们的工作,我们的目标是帮助社区创建更实惠、更高效、更高性能的语言模型,这些模型可以在广泛的现实世界应用程序中使用。 Mistral 7B在实践中,对于16K和W=4096的序列长度,对FlashAttentio…

Python-----PyInstaller的简单使用

PyInstaller简介 PyInstaller是一个Python库,可以将Python应用程序转换为独立的可执行文件。PyInstaller支持跨平台,可以在Windows、Linux和MacOS上生成可执行文件。 PyInstaller会分析Python程序,并将程序打包成一个完整的可执行文件&…

复杂数据统计与R语言程序设计实验一

1.下载并安装R语言软件,熟悉基本操作的命令及操作界面,掌握软件的使用方法(提供学号加姓名的截图)。 2.下载并安装Rstudio, (提供运行代码及运行结果的截图)。 3.下载并安装R包DT,…

uniapp小程序定位;解决调试可以,发布不行的问题

遇见这个问题;一般情况就两种 1、域名配置问题; 2、隐私协议问题 当然,如果你的微信小程序定位接口没开启;定位也会有问题; 第一种,小程序一般是腾讯地图;所以一般都会用https://apis.map.qq.co…

【Java】volatile-内存可见性问题

1、什么是内存可见性问题? (1)实例 要明白什么是内存可见性,我们首先来看一段代码 public class demo1 {public static int isQuit 0;public static void main(String[] args) {Thread thread1 new Thread(()->{while (is…

Redis高级特性和应用(发布 订阅、Stream)

目录 发布和订阅 操作命令 发布消息 订阅消息 查询订阅情况 查看活跃的频道 查看频道订阅数 使用场景和缺点 Redis Stream Stream总述 常用操作命令 生产端 消费端 单消费者 消费组 创建消费组 消息消费 在Redis中实现消息队列 基于pub/sub 基于Stream Re…

Element Plus框架快速上手详解(一)

Element Plus框架快速上手详解 1、Element Plus1.1、安装 2、Button3、Link链接4、Layout布局5、Container布局容器6、Radio单选框6.1、单选框组6.2、事件 7、Checkbox多选框7.1、多选框组7.2、事件 8、Input输入框组件8.1、事件8.2、方法 9、Select选择器9.1、基础多选9.2、事…

pytho你-opencv划痕检测

pytho你-opencv划痕检测 这次实验,我们将对如下图片进行划痕检测,其实这个比较有难度,因为清晰度太差了。 我们做法如下: (1)读取图像为灰度图像,进行自适应直方图均衡化处理,增强…

ClickHouse的 MaterializeMySQL引擎

1 概述 MySQL 的用户群体很大,为了能够增强数据的实时性,很多解决方案会利用 binlog 将数据写入到 ClickHouse。为了能够监听 binlog 事件,我们需要用到类似 canal 这样的第三方中间件,这无疑增加了系统的复杂度。 ClickHouse 20.…

python爬虫SHA案例:某直播大数据分析平台

声明: 该文章为学习使用,严禁用于商业用途和非法用途,违者后果自负,由此产生的一切后果均与作者无关 一、找出需要加密的参数 js运行 atob(‘aHR0cDovL3d3dy5oaDEwMjQuY29tLyMvc2VhcmNoL3NlYXJjaA’) 拿到网址,F12打…