基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码

基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于人工水母优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用人工水母算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于人工水母优化的PNN网络

人工水母算法原理请参考:https://blog.csdn.net/u011835903/article/details/121675877

利用人工水母算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

人工水母参数设置如下:

%% 人工水母参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,人工水母-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152166.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Network(三)动态路由与ACL配置

一 三层交换机 1 三层交换机概述 三层交换二层交换三层转发 2 虚拟接口概述 在三层交换机上配置的VLAN接口为虚拟接口,使用Vlanif(VLAN虚拟接口)实现VLAN间路由,VLAN接口的引入使得应用更加灵活 三层交换机VLAN间通信的转发…

vue3+vite+SQL.js 读取db3文件数据

前言:好久没写博客了,最近一直在忙,没时间梳理。最近遇到一个需求是读取本地SQLite文件,还是花费了点时间才实现,没怎么看到vite方面写这个的文章,现在分享出来完整流程。 1.pnpm下载SQL.js(什么都可以下)…

力扣每日一题-数位和相等数对的最大和-2023.11.18

力扣每日一题:数位和相等数对的最大和 开篇 这道每日一题还是挺需要思考的,我绕晕了好久,根据题解的提示才写出来。 题目链接:2342.数位和相等数对的最大和 题目描述 代码思路 1.创建一个数组存储每个数位的数的最大值,创建一…

软件项目测试指南

软件测试是保证软件产品质量的重要手段之一。它是测量、评估软件产品特点和能力的活动。现在,国内一些软件企业对于软件测试的重视程度还很不够,认为测试工作非常简单,只是简单地操作所测的软件产品而已。这种错误的思想严重影响了国内软件质…

Evil靶场

Evil 1.主机发现 使用命令探测存活主机,80.139是kali的地址,所以靶机地址就是80.134 fping -gaq 192.168.80.0/242.端口扫描 开放80,22端口 nmap -Pn -sV -p- -A 192.168.80.1343.信息收集 访问web界面 路径扫描 gobuster dir -u http…

【C++上层应用】2. 预处理器

文章目录 【 1. #define 预处理 】【 2. #ifdef、#if 条件编译 】2.1 #ifdef2.2 #if2.3 实例 【 3. # 和 ## 预处理 】3.1 # 替换预处理3.2 ## 连接预处理 【 4. 预定义宏 】 预处理器是一些指令,指示编译器在实际编译之前所需完成的预处理。 所有的预处理器指令都是…

SpringBoot2—运维实用篇

目录 打包与运行 • 程序打包与运行(Windows版) • 程序运行(Linux版) 配置高级 • 临时属性设置 • 配置文件分类 • 自定义配置文件 多环境开发 多环境开发(yaml单一文件版) 多环境开发&am…

碰到一个逆天表中表数据渲染

1. 逆天表中表数据问题 我有一个antd-table组件,他的编辑可以打开一个编辑弹窗打开弹窗里面还会有一个表格,如果这个表格的column是在外层js文件中保存的话,那么第一次打开会正常渲染数据,再次打开就不会渲染,即使是已…

SQL单表复杂查询where、group by、order by、limit

1.1SQL查询代码如下&#xff1a; select job as 工作类别,count(job) as 人数 from tb_emp where entrydate <2015-01-01 group by job having count(job) > 2 order by count(job) limit 1,1where entrydate <‘2015-01-01’ 表示查询日期小于2015-01-01的记录…

【Leetcode合集】2342. 数位和相等数对的最大和

文章目录 2342. 数位和相等数对的最大和方案1方案2方案3方案4 2342. 数位和相等数对的最大和 2342. 数位和相等数对的最大和 代码仓库地址&#xff1a; https://github.com/slience-me/Leetcode 个人博客 &#xff1a;https://slienceme.xyz 给你一个下标从 0 开始的数组 nu…

Git安装与常用命令

Git简介&#xff1a; Git是一个开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或大或小的项目。Git是Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源代码的版本控制软件。Git与常用的版本控制工具CVS、Subversion等不同&#xff0c;它采用了分布式…

动态改标题

<el-dialog :title"showTitle" :visible"showDialog" close"close"> </el-dialog>使用计算属性 computed: {showTitle() {//这里根据点击的是否有具体点击的那个id来判断return this.form.id ? "编辑部门" : "新增部…

Virtual安装centos后,xshell连接centos 测试及遇到的坑

首先来一张官方的图--各种网络模式对应的连接状况&#xff1a; 1. 网络使用Host-Only模式动态分配IP&#xff0c;点确定后&#xff0c;centos 上运行 system restart network &#xff0c;使用ifconfig查看新的ip&#xff0c;XShell可以直接连上centos&#xff0c; 但是由于使用…

【总结】坐标变换和过渡矩阵(易忘记)

xCy&#xff0c;此为x到y的坐标变换。 [β1,β2,…,βn] [α1,α2,…αn]C&#xff0c;此为基α到基β的过渡矩阵。 这个概念经常忘记。。。alpha到beta看来就是alpha后面加一个过渡矩阵了&#xff0c;很直观。坐标变换就是根据过渡矩阵和基本形式推一推得到吧&#xff0c;记…

大型 APP 的性能优化思路

做客户端开发都基本都做过性能优化&#xff0c;比如提升自己所负责的业务的速度或流畅性&#xff0c;优化内存占用等等。但是大部分开发者所做的性能优化可能都是针对中小型 APP 的&#xff0c;大型 APP 的性能优化经验并不会太多&#xff0c;毕竟大型 APP 就只有那么几个&…

linux 定时执行脚本

先写一个简单的shell脚本用来测试定时执行脚本 [rootVM-12-12-centos wz]# cat shell_cron_test.sh #!/bin/bashif [ -f "/home/wz/cron_test.txt" ];thennum$(($(wc -l /home/wz/cron_test.txt | cut -d -f 1)1))elsenum1 fi echo "$(date "%y-%m-%d …

你知道STM32和51单片机的区别吗?

你知道STM32和51单片机的区别吗&#xff1f; 51单片机是很经典的一款单片机。事实上很多电信专业本科阶段都会以这个单片机作为入门。最近很多小伙伴找我&#xff0c;说想要一些STM32的资料&#xff0c;然后我根据自己从业十年经验&#xff0c;熬夜搞了几个通宵&#xff0c;精心…

比赛调研资料

视觉文旅 现有的模型 数据 功能 精准营销 基于地理推荐能力 乡村圈分析能力 都市圈分析能力 产品体系 三大数据平台 携程问道 旅游服务框架&#xff1a;前置&#xff08;推荐种草&#xff09;&#xff0c;途中&#xff08;客服&#xff09;&#xff0c;售后&#xff0…

【SpringMvc】SpringMvc +MyBatis整理

&#x1f384;欢迎来到边境矢梦的csdn博文&#x1f384; &#x1f384;本文主要梳理 Java 框架 中 SpringMVC的知识点和值得注意的地方 &#x1f384; &#x1f308;我是边境矢梦&#xff0c;一个正在为秋招和算法竞赛做准备的学生&#x1f308; &#x1f386;喜欢的朋友可以关…