【【VDMA彩条显示实验之四 含C语言代码】】

VDMA彩条显示实验之四 含C语言代码

VTC 手册简介

所有的视频都需要有时序 有时序的地方就需要有 时序控制器
VTC的 主要作用是 产生 视频时序

相对于上一节 在这里 我们会理解的更多
在这里插入图片描述

观察 这个 HB 信号 其实这个和上一节的图片差不多
在 行同步信号 前面就是前沿 在 行同步信号的后侧 就是 后沿

在这里插入图片描述

VTC 还可以最多支持 16 个 帧同步信号

在这里插入图片描述

我们来配置 VTC
首先观察我们需要配置的 各项参数 设置
在这里插入图片描述

这是 LCD 时序参数
我们需要做的是将 这个参数 与 VTC的 配置 关联起来

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

下面我们来配置 帧时序

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最终设计的block design

在这里插入图片描述

我们观察一下 像素时钟接到了 哪几个端口上
在这里插入图片描述

我们会发现 由 PLL 锁相环产生 的 像素时钟 连接到 了 VTC 模块 Video out的 一个 clk 还有 连接到了 lcd_clk 上
其他上用的大多是 100M的时钟
int run_triple_frame_buffer(XAxiVdma* InstancePtr , int DeviceId , int hsize, int vsize, int buf_base_addr, int number_frame_count, int enable_frm_cnt_intr)
第一个参数是 XAxiVdma* InstancePtr ----> VDMA 数据结构的 句柄
第二个参数是 int DeviceId -------> VDMA 器件 的 ID
第三个参数是 int hsize --------> 一帧水平方向上的大小
第四个参数是 int vsize ----------> 竖直方向上的大小
第五个参数是 int buf_base_addr ----------> VDMA 起始帧缓存的地址
第六个参数 是 int number_frame_count ----------> 指定了经过多少帧之后 会迎来中断
第七个参数是 int enable_frm_cnt_intr --------> 告诉我们是否需要使能帧计数器这样的 一个中断
因为在本次实验中 我们并不是很需要中断 所以最后两个参数可以不用去考虑

下面展示整个C语言代码

#include "stdio.h"
#include"xparameters.h"
#include "xaxivdma.h"
#include "vdma_api.h"
#define VDMA_ID            XPAR_AXIVDMA_0_DEVICE_ID
#define DDR_BASE_ADDR      XPAR_PS7_DDR_0_S_AXI_BASEADDR  // DDR存储空间 的起始地址
//这个是 DDR的基地址 我们是需要写一个彩条图案 但是 彩条图案总不能从基地址
//开始,因为我们程序 也是 从基地址 开始运行的 。 如果彩条图案是从基地址开始
//运行的话 ,就会给我们程序带来冲突  所以我们要重新定义一个帧缓存的地址
// 把宏定义的形式 改写成 变量的形式 这样在 后续可以更方便使用
int frame_buffer_addr  = (DDR_BASE_ADDR + 0x1000000)  ;// VDMA 帧缓存的地址
#define WIDTH   800  // 图像的宽度
#define HEIGHT  480  // 图像的高度
int main()
{
int i , j ;
u8* vdma_buffer_addr ;
vdma_buffer_addr = (u8*) frame_buffer_addr ;XAxiVdma vdma_inst;// 配置并启动 VDMArun_triple_frame_buffer(
&vdma_inst,        // vdma驱动实例
VDMA_ID,           // VDMA 的 ID信息
WIDTH,             //  图像的水平尺寸  宽度
HEIGHT,            //  图像的高度
frame_buffer_addr,   //  VDMA 究竟从DMA的哪个地址开始读取图像// VDMA 帧缓存的起始地址
0,
0);
//  往 VDMA 的帧缓存里面 写入 图案
for(j=0;j<HEIGHT ; j++){
for(i=0 ; i<WIDTH ; i++)
{
// 因为我们用的是 RGB 888 相当于 占据了 3个字节
// 我们使用的是 u8* 类型的 所以就如同下面写的那样 三个才表示一个数据
//
(vdma_buffer_addr + jWIDTH3 + i3+0 ) = 0xff ; //往像素的红色通道写入FF
(vdma_buffer_addr + jWIDTH3 + i3+1 ) = 0x00 ; //往像素的绿色通道写入00
(vdma_buffer_addr + jWIDTH3 + i3+2 ) = 0x00 ; //往像素的蓝色通道写入00
}
}
return 0  ;
}

我们在上电之后发现现象不对 开始修改
一个是红色和蓝色 的不对 还有一个是 只显示了一部分的颜色

为什么会没写好呢 是因为 我们 PS端的DDR控制器 会缓存一部分数据
我们需要把缓存的数据强行冲出来
void Xil_DCacheFlush(void); 添加 函数
下面是修改之后的代码

#include "stdio.h"
#include"xparameters.h"
#include "xaxivdma.h"
#include "vdma_api.h"
#include "xil_cache.h"
#define VDMA_ID            XPAR_AXIVDMA_0_DEVICE_ID
#define DDR_BASE_ADDR      XPAR_PS7_DDR_0_S_AXI_BASEADDR  // DDR存储空间 的起始地址
//这个是 DDR的基地址 我们是需要写一个彩条图案 但是 彩条图案总不能从基地址
//开始,因为我们程序 也是 从基地址 开始运行的 。 如果彩条图案是从基地址开始
//运行的话 ,就会给我们程序带来冲突  所以我们要重新定义一个帧缓存的地址
// 把宏定义的形式 改写成 变量的形式 这样在 后续可以更方便使用
int frame_buffer_addr  = (DDR_BASE_ADDR + 0x1000000)  ;// VDMA 帧缓存的地址
#define WIDTH   800  // 图像的宽度
#define HEIGHT  480  // 图像的高度
int main()
{
int i , j ;
u8* vdma_buffer_addr ;
vdma_buffer_addr = (u8*) frame_buffer_addr ;XAxiVdma vdma_inst;// 配置并启动 VDMArun_triple_frame_buffer(
&vdma_inst,        // vdma驱动实例
VDMA_ID,           // VDMA 的 ID信息
WIDTH,             //  图像的水平尺寸  宽度
HEIGHT,            //  图像的高度
frame_buffer_addr,   //  VDMA 究竟从DMA的哪个地址开始读取图像// VDMA 帧缓存的起始地址
0,
0);
//  往 VDMA 的帧缓存里面 写入 图案
for(j=0;j<HEIGHT ; j++){
for(i=0 ; i<WIDTH ; i++)
{
// 因为我们用的是 RGB 888 相当于 占据了 3个字节
// 我们使用的是 u8* 类型的 所以就如同下面写的那样 三个才表示一个数据
//
(vdma_buffer_addr + jWIDTH3 + i3+0 ) = 0x00 ; //往像素的蓝色通道写入FF
(vdma_buffer_addr + jWIDTH3 + i3+1 ) = 0x00 ; //往像素的绿色通道写入00
(vdma_buffer_addr + jWIDTH3 + i3+2 ) = 0xff ; //往像素的红色通道写入00
}
}
//将cache缓存的数据冲出来
Xil_DCacheFlush();
return 0  ;
}

纯色模块显示完毕 下面展示彩条代码的书写

#include "stdio.h"
#include"xparameters.h"
#include "xaxivdma.h"
#include "vdma_api.h"
#include "xil_cache.h"
#define VDMA_ID            XPAR_AXIVDMA_0_DEVICE_ID
#define DDR_BASE_ADDR      XPAR_PS7_DDR_0_S_AXI_BASEADDR  // DDR存储空间 的起始地址
//这个是 DDR的基地址 我们是需要写一个彩条图案 但是 彩条图案总不能从基地址
//开始,因为我们程序 也是 从基地址 开始运行的 。 如果彩条图案是从基地址开始
//运行的话 ,就会给我们程序带来冲突  所以我们要重新定义一个帧缓存的地址
// 把宏定义的形式 改写成 变量的形式 这样在 后续可以更方便使用
int frame_buffer_addr  = (DDR_BASE_ADDR + 0x1000000)  ;// VDMA 帧缓存的地址
#define WIDTH   800  // 图像的宽度
#define HEIGHT  480  // 图像的高度
int main()
{
int i , j ;
u8* vdma_buffer_addr ;
vdma_buffer_addr = (u8*) frame_buffer_addr ;XAxiVdma vdma_inst;// 配置并启动 VDMArun_triple_frame_buffer(
&vdma_inst,        // vdma驱动实例
VDMA_ID,           // VDMA 的 ID信息
WIDTH,             //  图像的水平尺寸  宽度
HEIGHT,            //  图像的高度
frame_buffer_addr,   //  VDMA 究竟从DMA的哪个地址开始读取图像// VDMA 帧缓存的起始地址
0,
0);
//  往 VDMA 的帧缓存里面 写入 图案
for(j=0;j<HEIGHT ; j++){
for(i=0 ; i<WIDTH ; i++)
{
// 因为我们用的是 RGB 888 相当于 占据了 3个字节
// 我们使用的是 u8* 类型的 所以就如同下面写的那样 三个才表示一个数据
//
if(i < WIDTH/3) {
(vdma_buffer_addr + jWIDTH3 + i3+0 ) = 0x00 ; //往像素的蓝色通道写入FF
(vdma_buffer_addr + jWIDTH3 + i3+1 ) = 0x00 ; //往像素的绿色通道写入00
(vdma_buffer_addr + jWIDTH3 + i3+2 ) = 0xff ; //往像素的红色通道写入00
}
else if( i <(2WIDTH)/3   ){(vdma_buffer_addr + jWIDTH3 + i3+0 ) = 0x00 ; //往像素的蓝色通道写入FF(vdma_buffer_addr + jWIDTH3 + i3+1 ) = 0xff ; //往像素的绿色通道写入00(vdma_buffer_addr + jWIDTH3 + i3+2 ) = 0x00 ; //往像素的红色通道写入00}else{(vdma_buffer_addr + jWIDTH3 + i3+0 ) = 0xff ; //往像素的蓝色通道写入FF(vdma_buffer_addr + jWIDTH3 + i3+1 ) = 0x00 ; //往像素的绿色通道写入00(vdma_buffer_addr + jWIDTH3 + i*3+2 ) = 0x00 ; //往像素的红色通道写入00
}}}
//将cache缓存的数据冲出来
Xil_DCacheFlush();
return 0  ;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149977.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM的高校毕业设计选题管理系统(有报告)。Javaee项目。

演示视频&#xff1a; 基于SSM的高校毕业设计选题管理系统&#xff08;有报告&#xff09;。Javaee项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring S…

可逆矩阵的性质

如果矩阵A可逆&#xff0c;那么它的逆矩阵也可逆&#xff0c;并且如果矩阵A可逆&#xff0c;假设是一个不为0的数&#xff0c;那么也可逆&#xff0c;并且如果矩阵A和都可逆&#xff0c;而且它们的阶数也相同&#xff0c;那么它们的乘积也是可逆的&#xff0c;并且如果矩阵A可逆…

详解SwinIR的论文和代码(SwinIR: Image Restoration Using Swin Transformer)

paper&#xff1a;https://arxiv.org/abs/2108.10257 code&#xff1a;https://github.com/JingyunLiang/SwinIR 目录 1. Swin Transformer layers1.1 局部注意力1.2 移动窗口机制1.3 关键代码理解 2. 整体网络结构2.1 浅层特征提取2.2 深层特征提取2.3 图像重建 3.总结 SwinI…

同城跑腿服务预约小程序的作用是什么

随着生活质量逐渐提升&#xff0c;围绕人们生活的行业或产品非常多&#xff0c;同时互联网赋能下&#xff0c;也出现了很多便捷人们日常消费的场景&#xff0c;如外卖服务、快递服务等。 跑腿仅依赖微信私聊及电话预约是很低效且容易出错及造成极大工作压力的&#xff0c;同时…

基于一致性算法的微电网分布式控制MATLAB仿真模型

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 本模型主要是基于一致性理论的自适应虚拟阻抗、二次电压补偿以及二次频率补偿&#xff0c;实现功率均分&#xff0c;保证电压以及频率稳定性。 一致性算法 分布式一致性控制主要分为两类&#xff1a;协调同…

Linux入门攻坚——6、磁盘管理——分区及文件系统管理

磁盘管理主要涉及分区的管理&#xff0c;以及分区后的文件系统管理。 磁盘的使用大体要分两步&#xff1a; 文件系统也是一个软件&#xff0c;根是自引用的。 文件系统的全局结构&#xff1a;物理格式&#xff1a; 一个磁盘刚被生产出来的时候&#xff0c;它里边没有划分扇区…

【Go入门】Web工作方式

【Go入门】 Web工作方式 我们平时浏览网页的时候,会打开浏览器&#xff0c;输入网址后按下回车键&#xff0c;然后就会显示出你想要浏览的内容。在这个看似简单的用户行为背后&#xff0c;到底隐藏了些什么呢&#xff1f; 对于普通的上网过程&#xff0c;系统其实是这样做的&…

基于RK3588的8k多屏异显安卓智能网络机顶盒

采用RK3588芯片方案的8K网络机顶盒&#xff0c;搭载纯净的安卓12操作系统&#xff0c;支持Ubuntu和Debian系统容拓展。主要面向外贸市场。此款机顶盒自带两个HDMI输出接口&#xff0c;一个HDMI输入接口&#xff0c;内置双频WiFi6无线模块&#xff0c;支持千兆以太网和USB接口。…

【文末送书】十大排序算法及C++代码实现

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

微创机器人:CRM撬动售后服务数字化升级

一方面&#xff0c;我国医疗器械行业起步较晚&#xff0c;更注重产品的销售和业务的拓展&#xff0c;企业售后服务整体比较滞后。 另一方面&#xff0c;医疗器械售后服务环节数字化程度不足&#xff0c;一些企业仍通过传统的线下手段管理售后服务&#xff0c;进行数字化尝试的…

【快速解决】实验四 对话框 《Android程序设计》实验报告

目录 前言 实验要求 实验四 对话框 正文开始 第一步建立项目 第二步选择empty views activity点击next ​编辑 第三步起名字&#xff0c;点击finish 第四步对 activity _main.xml文件操作进行布局 第五步&#xff0c;建立两个新文件&#xff0c;建立方法如下 SecondA…

SLAM中提到的相机位姿到底指什么?

不小心又绕进去了&#xff0c;所以掰一下。 以我个人最直观的理解&#xff0c;假设无旋转&#xff0c;相机在世界坐标系的(5,0,0)^T的位置上&#xff0c;所谓“位姿”&#xff0c;应该反映相机的位置&#xff0c;所以相机位姿应该如下&#xff1a; Eigen::Matrix4d T Eigen::M…

亚马逊云科技AI创新应用下的托管在AWS上的数据可视化工具—— Amazon QuickSight

目录 Amazon QuickSight简介 Amazon QuickSight的独特之处 Amazon QuickSight注册 Amazon QuickSight使用 Redshift和Amazon QuickSightt平台构建数据可视化应用程序 构建数据仓库 数据可视化 Amazon QuickSight简介 亚马逊QuickSight是一项可用于交付的云级商业智能 (BI…

基于circle group的Reed-Solomon codes

1. 引言 Polygon团队Ulrich Habock等人2023年论文 Reed-Solomon codes over the circle group。 前序博客有&#xff1a; Plonky3 Mersenne素数域的Reed-Solomon codes设计 STARKs支持任意size的域&#xff0c;而不要求是椭圆曲线。STARKs中在选择域size时&#xff0c;越小…

Unity中 Start和Awake的区别

Awake和Start在Unity中都是MonoBehaviour脚本中的生命周期函数 Awake函数在游戏对象首次被加载时调用&#xff0c;在游戏对象初始化之前调用。 start函数在游戏对象初始化完成后调用&#xff0c;在update第一次执行前调用。 这两个函数在其生命周期内都只会调用一次&#xf…

SpringBoot的启动流程

一、SpringBoot是什么&#xff1f; springboot是依赖于spring的&#xff0c;比起spring&#xff0c;除了拥有spring的全部功能以外&#xff0c;springboot无需繁琐的xml配置&#xff0c;这取决于它自身强大的自动装配功能&#xff1b;并且自身已嵌入Tomcat、Jetty等web容器&am…

redis+python 建立免费http-ip代理池;验证+留接口

前言: 效果图: 对于网络上的一些免费代理ip,http的有效性还是不错的;但是,https的可谓是凤毛菱角; 正巧,有一个web可以用http访问,于是我就想到不如直接拿着免费的HTTP代理去做这个! 思路: 1.单页获取ipporttime (获取time主要是为了后面使用的时候,依照时效可以做文章) 2.整…

windows环境搭建Zblog博客并发布上线公网可访问

文章目录 1. 前言2. Z-blog网站搭建2.1 XAMPP环境设置2.2 Z-blog安装2.3 Z-blog网页测试2.4 Cpolar安装和注册 3. 本地网页发布3.1. Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 想要成为一个合格的技术宅或程序员&#xff0c;自己搭建网站制作网页是绕…

总结 CNN 模型:将焦点转移到基于注意力的架构

一、说明 在计算机视觉时代&#xff0c;卷积神经网络&#xff08;CNN&#xff09;几十年来一直是主导范式。直到 2021 年 Vision Transformers (ViTs) 出现&#xff0c;这个领域才开始发生变化。现在&#xff0c;是时候采用受 Transformer 架构启发的基于注意力的模型了&#x…

Springboot+vue的机动车号牌管理系统(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频: Springbootvue的机动车号牌管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的机动车号牌管理系统&#xff0c;采用M&#xff08;model&#xff09…