ICASSP2023年SPGC多语言AD检测的论文总结

文章目录

    • 引言
    • 正文
      • Abstract
      • Related Article
        • No.1: CONSEN: COMPLEMENTARY AND SIMULTANEOUS ENSEMBLE FOR ALZHEIMER'SDISEASE DETECTION AND MMSE SCORE PREDICTION
          • 特征相关
          • 模型结构
          • 数据处理
          • 结果分析
        • No.2: CROSS-LINGUAL TRANSFER LEARNING FOR ALZHEIMER'S DETECTION FROM SPONTANEOUS SPEECH
          • 特征相关
          • 模型结构
          • 数据处理
          • 结果分析
        • No.3: THE USTC SYSTEM FOR ADRESS-M CHALLENGE
          • 特征相关
          • 模型结构
          • 数据处理
          • 结果分析
        • No.4: Baseline/MULTILINGUAL ALZHEIMER'S DEMENTIA RECOGNITION THROUGH SPONTANEOUS SPEECH: A SIGNAL PROCESSING GRAND CHALLENGE
          • 特征相关
          • 模型结构
          • 数据处理
          • 结果分析
        • No.5: EXPLORING LANGUAGE-AGNOSTIC SPEECH REPRESENTATIONS USING DOMAIN KNOWLEDGE FOR DETECTING ALZHEIMER’S DEMENTIA
          • 特征相关
          • 模型结构
          • 数据处理
          • 结果分析
        • No.6: Cross-lingual Alzheimer's Disease detection based on paralinguistic and pre-trained features
          • 特征相关
          • 模型结构
          • 数据处理
          • 结果分析
    • 总结

引言

  • 已经读完了所有的文章,这里需要对于跨语言AD检测的比赛进行一个综合性的总结。
  • 主要是总结一下几个方向
    • 这些论文尝试了哪些特征?是如何实现的?结论如何?
    • 这些论文是如何实现分类问题的?如何实现检测问题的?
    • 这些论文是如何处理数据的?
    • 这些论文是如何改良结果的。

正文

Abstract

  • 在第一部分,首先对每一篇论文的技术方案从四个方面进行总结,分别是特征相关、模型实现相关、处理数据的方式还有结果分析。正在第二部分,我们将对左右文章进行总结,从使用特征,实现方法,数据集处理进行分析。
  • 最后一部分,将会对全文进行一个总结,总结出下一步应该干什么。

Related Article

No.1: CONSEN: COMPLEMENTARY AND SIMULTANEOUS ENSEMBLE FOR ALZHEIMER’SDISEASE DETECTION AND MMSE SCORE PREDICTION
  • 相关论文学习链接:链接
特征相关

音频特征尝试Acoustic Features

  • wav2vec:53个跨语言模型得出,对应项目链接,但是没有在希腊语上调整过。
  • i-vector:链接
  • x-vector:链接
  • VGGish:链接

不流利特征Disfluency Features Extraction

  • Unnatural speech Breaks不自然的停顿
  • longer speech durations更长时间的发音
  • more speech pause更多的语音停顿
  • slower speech rate更慢的语音速率
  • 。。。一共18种不流利特征
模型结构

在这里插入图片描述

  • 特征融合的效果更好,使用Majority Voting解决
数据处理

数据进行分段,按照角色和停顿进行分段
在这里插入图片描述

结果分析
  • 不流利特征集的分类效果,要好于音频特征集,所以disfluency特征更加不受语言的限制
  • 特征融合之后,效果有显著提升。
No.2: CROSS-LINGUAL TRANSFER LEARNING FOR ALZHEIMER’S DETECTION FROM SPONTANEOUS SPEECH
  • 鲁汶大学的比赛结果,第二名,是唯一一个公开代码,公开pt文件的队伍。
  • 文章学习链接:相关链接
特征相关

音频特征

  • eGeMAPS:来自OpenSmile,相关链接
模型结构
  • 主要是对于eGeMAPS的处理,分为4个部分

这里没有细看,不过可以结合代码进行学习

数据处理

数据平衡和补充

  • 去除没有MMSE分数的AD患者
  • 去除8个AD患者,保证AD患者和健康人的数据平衡,都是114个人
  • 补充未知的数据,确保所有人的特征都有

数据扩容——分段

  • 将数据分为10段等长的段落,然后对每段计算对应的OpenSmile的eGeMAPS特征
结果分析
  • 单纯从使用结果上来看,这里仅仅使用了音频特征,分类的准确率就达到了88.9%,所以有效利用音频特征,音频特征也是能够有效进行分类的。
No.3: THE USTC SYSTEM FOR ADRESS-M CHALLENGE
  • 综合排名第三的是中科大的论文,整体性能不错,但是没有提供源代码,参考的信息不多。
  • 文章学习链接:相关链接
特征相关

Silence Features静音特征

  • 静音的次数、静音时间和语音持续时间的比率、静音和语音持续时间的统计特征

Acoustic Features音频特征

  • 低频段音频特征
  • eGeMAPS(eGM):来自OpenSmile,相关链接
  • ComParE2016(CPE):来源同上

Language Features语义特征

  • facebook/wav2vec2-base-960h" model (WB):对应链接
    • 使用英语和希腊语数据集进行微调强化,保证语义特征的有效性
  • facebook/hubert-base-ls960" model (HB):对应链接
模型结构
  • 中科大探索的很全面,不仅仅尝试了前两篇论文的所有特征,还额外增加了语义特征,
数据处理

提取韵律信息

  • 对声音使用低通滤波,保留语言中通用的韵律信息,过滤表示语言音素信息的高频信息
结果分析

在这里插入图片描述

  • 中科大探索的很全面,不仅仅尝试了前两篇论文的所有特征,还额外增加了语义特征,同时还使用了不同的融合方式进行测试,但是效果比单单使用某一种特征的效果还差,这不排除,没有对数据进行有效地处理,同时连接的方式有问题。

  • ID5仅仅使用了语义特征,效果最好,说明了语义特征有效性,但是需要使用特定双语数据集进行平衡微调才有效。

  • 做了这么多实验,只是想证明单独使用音频特征的有效性。

No.4: Baseline/MULTILINGUAL ALZHEIMER’S DEMENTIA RECOGNITION THROUGH SPONTANEOUS SPEECH: A SIGNAL PROCESSING GRAND CHALLENGE
  • 综合排名第四的是baseline,很诧异,二十多支参赛队伍,只有三个队伍的效果是超过baseline的。说明baseline的效果还是很厉害的。
  • 文章学习链接:相关链接
特征相关

Acoustic Features音频特征

  • eGeMAPS(eGM):来自OpenSmile,相关链接
    • F0(基频)半音、响度、频谱流、MFCC(梅尔频率倒谱系数)、抖动、闪变、F1、F2、F3、alpha比、Hambarg指数以及斜率V0特征,以及它们最常见的统计功能,每帧总共88个特征
模型结构

在这里插入图片描述

  • 并没使用很复杂方式进行特征提取,而是使用传统的机器学习进行处理,并没有使用任何其他的方法。
数据处理

标准化音频文件

  • 使用ffmpeg的EBU R128扫描器滤波器来标准化音频文件的音量

帧化处理

  • 对音频应用了1秒钟的滑动窗口(没有重叠),并在这些帧上提取了eGeMAPS特征
结果分析
  • baseline虽然是参考的基准,但是效果各项都很全面,都很厉害,同时他处理音频方式的也很独特,需要好借鉴学习。
  • baseline证明了传统音频特征的有效性,同时对声音进行帧化处理,提取的特征更加明确。
No.5: EXPLORING LANGUAGE-AGNOSTIC SPEECH REPRESENTATIONS USING DOMAIN KNOWLEDGE FOR DETECTING ALZHEIMER’S DEMENTIA
  • 综合排名第五的是加拿大大学的阿尔伯特大学,没有提供源代码,但是也是仅有的五篇文章之一,总结一下。
  • 文章学习链接:相关链接
特征相关

word level duration features词级持续时间特征集

  • 这个特征集主要描述的是说话者是否使用了短词或者长词,以及他们说出他们的时间
    • Whisper实现

Pause rate features set停顿率特征集

  • 这个特征集描述的是自发语音中的检测出的停顿的分布。
    • OpenSmile实现

Speech intelligibility feature set

  • 这个特征集描述了听者可以理解语音的易用性和准确性,这里由语音识别模型分配给每个识别词的词级置信度分数表示。
    • 感觉欠妥,这部分过分牵扯到了口音清晰的重要性
模型结构
  • 特征提取 + 常规机器学习方法分类
数据处理

统一数据模态

  • 使用Whisper-Large将所有音频进行撰写,然后在进行翻译,统一翻译为英文进行处理。
结果分析
  • 三种特征整体来说还是很有效的,最起码具有可理解性,而且作者尝试了不同的结合方式。
No.6: Cross-lingual Alzheimer’s Disease detection based on paralinguistic and pre-trained features
  • 综合排名第六的是清华大学的分析文章,也是我看来应该是最好的,而且是最有潜力的文章,单单使用了单一模态的特征效率就很高,如果特征进行融合,效果应该会更高。
  • 文章学习链接:相关链接
特征相关

Paralinguistic features based approach副语言特征相关方法——OpenSmile

  • 之前已经说过了,副语言特征对于单语言而言效果很棒,这里使用开源的OpenSmile框架对副语言特征进行副语言特征提取,主要是用了三个副语言特征数据集
    • IS10-Paralinguistics-compat feature set
    • IS10-Paralinguistics feature set
    • IS11-speaker-state feature set.

Pre-trained acoustic features based approach基于预训练模型提取的音频特征——XLSR-53

  • 我们这里用的是预先训练过的XLSR-53模型作为预训练模型,这个东西是跨语言预训练模型,在53种语言数据集上进行过训练。

Pre-trained linguistic features based approac基于预训练的语义特征方法——Whisper

  • 翻译之后的文本将会用来对RoBERTa模型进行微调。最终的分类任务和回归任务是通过调整最终神经元的数量来实现的。
模型结构

在这里插入图片描述

数据处理
  • 并未涉及到很多数据处理方式
结果分析

在这里插入图片描述

总结

目前来看,总共6篇文章,各自使用了不同的方法,尝试了不同的特征,根据每一篇文章的内容可以做出来如下的一些总结

  • 第一篇文章,证明了disfluency feature的有效性,同时AD任务和MMSE分类任务的相关性。

  • 第二篇文章,证明了在有效的数据处理的情况下,eGeMAPS特征的有效性。

  • 第三篇文章,证明了通过平衡数据微调之后的语义特征,具有跨语言的特性,效果较好。

    • 有效的链接,应该是比单模态的效果要好;无效的链接,只会让融合之后的结果更差。
  • 第四篇文章——baseline,证明了常见音频特征eGeMAPS的有效性,同时帧化处理之后的特征更加明显。

  • 第五篇文章,虽然他自己说这两种特征有效,但是可理解性的定义并没有牵扯到语义,个人认为没有什么效果,这篇文章没啥效果。

  • 第六篇文章,证明了副语言特征的的有效性,证明了语义特征的和文本内容高度绑定,并不能实现跨语言分析。

  • 综上,可以在特征融合上下功夫,每一篇文章都没有时间去充分证明特征融合的有效性,或者说做的融合都很糟糕。最起码不应该比原来的模型差。

  • 除此之外,还应该尝试多种数据预处理方式,包括帧化,低频过滤、文本翻译转写等操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149841.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

「Tech初见」对epoll的理解

一、Motivation 通常,操作系统会为每个进程划分一个时间片的,在这个时间片内进程可以合法占有 cpu 进行一些计算任务。并当时间片结束后自动退回至就绪状态待命,等待下一次的调度 但是,有一种情况会使进程提前(时间片…

vue中为什么data属性是一个函数而不是一个对象

面试官:为什么data属性是一个函数而不是一个对象? 一、实例和组件定义data的区别 vue实例的时候定义data属性既可以是一个对象,也可以是一个函数 const app new Vue({el:"#app",// 对象格式data:{foo:"foo"},// 函数格…

EDA实验-----4*4矩阵键盘与数码管显示测试(Quartus ‖)

目录 一、实验目的 二、实验仪器设备 三、实验原理 四、实验要求 五、实验步骤 六、实验报告 七、实验过程 1.矩阵键盘按键原理 2.数码管原理 3.分频器代码 4.电路图连接 5.文件烧录 一、实验目的 了解数码管的工作原理;掌握4*4矩阵键盘和数码管显示的编…

纵行科技亮相2023汽车物流行业年会,与菜鸟共推ZETag资产管理方案

近日,由中物联汽车物流分会主办的“汽车物流行业年会”在十堰召开。纵行科技受邀亮相,并与菜鸟共推ZETag资产管理方案,助力汽车物流数字化发展。 当前,我国物流业处于恢复性增长和结构性调整的关键期,国务院印发的《…

大模型的交互能力

摘要: 基础大模型显示出明显的潜力,可以改变AI系统的开发人员和用户体验:基础模型降低了原型设计和构建AI应用程序的难度阈值,因为它们在适应方面的样本效率,并提高了新用户交互的上限,因为它们的多模式和生…

中间件安全:Apache 目录穿透.(CVE-2021-41773)

中间件安全:Apache 目录穿透.(CVE-2021-41773) Apache 的 2.4.49、2.4.50 版本 对路径规范化所做的更改中存在一个路径穿越漏洞,攻击者可利用该漏洞读取到Web目录外的其他文件,如系统配置文件、网站源码等&#xff0c…

K-Means聚类

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 K-means聚类算法实现 技术细节 选取的数据集是sklearn.datasets里面的鸢尾花数据集,方便最后的算法评价。 根据手肘法(即根据SSE代价函数)得出最合适的k值。 此处思路是先根据E …

【实用技巧】更改ArduinoIDE默认库文件位置,解放系统盘,将Arduino15中的库文件移动到其他磁盘

本文主要介绍更改Arduino IDE (含2.0以上版本)默认库文件位置的方法。 原创文章,转载请注明出处: 【实用技巧】更改ArduinoIDE默认库文件位置,解放C盘,将Arduino15中的库文件移动到其他磁盘-CSDN博客文章浏…

Kubernetes Dashboard部署ImagePullBackOff问题处理

通常,出现ImagePullBackOff问题是由于Kubernetes集群无法拉取所需的镜像导致的。解决这个问题的方法通常包括以下步骤: 1. 检查Pod的描述信息: kubectl describe pod/[pod名称] --namespacekubernetes-dashboard 查看Events部分是否有关于…

Windows安装Java环境(OracleJDK)

在下载之前,我们先了解一下java的前世今生 1991年:Java 的前身 Oak 由 James Gosling 和他的团队在 Sun Microsystems 公司开发。1995年:Oak 更名为 Java,并在同年发布。Java 1.0 版本正式推出。1996年:Sun Microsyst…

Threejs_06 多材质的实现

Threejs 同一个几何体如何实现多材质呢? 多材质的实现 1.使用索引绘制一个几何体 //创建几何体(三角形) const geometry new THREE.BufferGeometry();//使用索引绘制 (两个共用的) const vertices new Float32Array([-1.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1…

谈谈系统性能调优中都需要考虑哪些因素

一、 什么是性能调优? 这个系统好慢、网站又打不开了,太卡了,又没响应了,相信大家都遇到过用户的这种抱怨,此时,说明我们的应用系统出现了性能问题,那么怎么办呢,首先想到的应该是优…

HP惠普暗影精灵9笔记本电脑OMEN by HP Transcend 16英寸游戏本16-u0000原厂Windows11系统

惠普暗影9恢复出厂开箱状态,原装出厂Win11-22H2系统ISO镜像 下载链接:https://pan.baidu.com/s/17ftbBHEMFSEOw22tnYvPog?pwd91p1 提取码:91p1 适用型号:16-u0006TX、16-u0007TX、16-u0008TX、16-u0009TX、16-u0017TX 原厂系…

数据结构与算法编程题2

逆置线性表&#xff0c;使空间复杂度为 O(1) #include <iostream> using namespace std;typedef int ElemType; #define Maxsize 100 #define OK 1 #define ERROR 0 typedef struct SqList {ElemType data[Maxsize];int length; }SqList;void Init_SqList(SqList& …

YOLOV8部署Android Studio安卓平台NCNN

下载Android Studio&#xff0c;配置安卓开发环境&#xff0c;这个过程比较漫长。 安装cmake&#xff0c;注意安装的是cmake3.10版本。 根据手机安卓版本选择相应的安卓版本&#xff0c;我的是红米K30Pro&#xff0c;安卓12。 使用腾讯开源的ncnn&#xff0c;这是一个为手机端极…

驶入产业发展快车道,汉鑫科技人工智能研发中心正式启用!

11月18日&#xff0c;汉鑫科技人工智能研发中心正式启用。中心立足烟台&#xff0c;服务全国&#xff0c;聚焦工业智能、智能网联、智慧城市三大业务板块&#xff0c;以人工智能技术赋能政企实现“数智化”转型升级。该中心的启用标志着汉鑫科技在人工智能研发应用领域迈上了新…

移动端表格分页uni-app

使用uni-app提供的uni-table表格 网址&#xff1a;https://uniapp.dcloud.net.cn/component/uniui/uni-table.html#%E4%BB%8B%E7%BB%8D <uni-table ref"table" :loading"loading" border stripe type"selection" emptyText"暂无更多数据…

【Nacos】配置管理、微服务配置拉取、实现配置热更新、多环境配置

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaEE 操作系统 Redis 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 Nacos 一、nacos实现配置管理1.1 统一配置管…

Taro安装及使用

安装及使用 安装​ Taro 项目基于 node&#xff0c;请确保已具备较新的 node 环境&#xff08;>12.0.0&#xff09;&#xff0c;推荐使用 node 版本管理工具 nvm 来管理 node&#xff0c;这样不仅可以很方便地切换 node 版本&#xff0c;而且全局安装时候也不用加 sudo 了…

不必购买Mac,这款国产设计工具能轻松替代Sketch!

介绍 即时设计是新一代可以直接在浏览器中使用的设计工具&#xff0c;具有Sketch和实时协作功能。与本地Sketch相比&#xff0c;增加了实时协作功能&#xff0c;即时设计可以看作是在线Sketch&#xff0c;两个工具可以简单粗暴地总结为一个公式&#xff1a; 即时设计Sketch云…