ChatGpt3.5已经应用了一段时间,分享一些自己的使用心得.

        

首先ChatGpt3.5的文本生成功能十分强大,但是chatgpt有一些使用规范大家需要注意,既然chat是一种工具,我们就需要学会它的使用说明,学会chatgpt的引用语句,会极大的方便我们的使用。我们需要做以下的准备。

  1. 明确任务和目的:在使用ChatGPT进行文本生成之前,需要明确任务和目的。例如,是生成一篇文章、故事、对话还是其他文本内容。同时,还需要明确文本的受众、文体和语言风格等。
  2. 提供输入信息:ChatGPT需要根据输入的信息进行文本生成。提供清晰的输入信息可以帮助ChatGPT更好地理解任务和目的,并生成符合要求的文本内容。输入信息可以包括主题、关键词、上下文等。
  3. 选择合适的模型参数:ChatGPT具有多个模型参数可供选择,包括模型类型、序列长度、嵌入维度等。选择合适的模型参数可以提高文本生成效率和准确性。
  4. 生成文本:在提供输入信息和选择合适的模型参数后,ChatGPT可以自动生成文本内容。可以根据需要生成单个句子或多个句子,也可以生成完整的文章或故事等。
  5. 调整和优化:在使用ChatGPT进行文本生成时,需要根据实际情况进行调整和优化。如果生成的文本内容不符合要求或存在错误,可以重新选择输入信息或调整模型参数,以获得更准确的文本生成结果。

 chatgpt若想使用的比较好,必须要总结自己的使用心得,了解chat的使用,学会训练chat。这样才是一件好的工具。

 chatgpt虽然有时会出错,我们很难发现。因为这种人工智能一旦胡说八道,真的很一本正经 。我们感到最难用时,可能就是它答非所问或者说它难以给我我们心里预期的答案。比如说让它写一个500字的文章,它老是写个400字左右。真的很恶心!!!

文心一言

我也尝试使用了一次文心一言,发现反应速度真的很慢,相对于chatgpt。如果我们可以正常访问chatgpt。我感觉chatgpt的速度是文心一言的两倍。虽然文心一言用着也很不错。但是和chatgpt相比还是差一点。生成文本的话,使用感受,也能感觉到很不错。文心一言生成没问题,它和chatgpt相对阅读问题的能力差一点。

俩者对同一个问题的处理大家可以看一下对比

 文心一言直接写成诗歌

其实综上两者并没有多大差别,但如果让两者写一个算法题呢 ?

这是文心一言的答案

这是chat的答案 

这两者对比差距不大,但是chatgpt记录了你的喜好,如果你平时问java方面的问题,它会直接回复你java的代码。而文心一言就差一点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

挖掘PostgreSQL事务的“中间态”----更加严谨的数据一致性?

1.问题 今天在上班途中,中心的妹纸突然找我,非常温柔的找我帮忙看个数据库的报错。当然以我的性格,妹子找我的事情对我来说优先级肯定是最高的,所以立马放下手中的“小事”,转身向妹子走去。具体是一个什么样的问题呢…

unity-模块卸载重新安装

unity-模块卸载重新安装 发现模块错误?发现不可以卸载重装?... 依据以下步骤试试: 1. 删除模块文件夹(以安卓模块为例) 2. 找见编辑器模块json 3. 找见所有安卓相关模块修改selected为false:"sel…

在QGIS中加载显示3DTiles数据

“我们最近有机会在QGIS 3.34中实现一个非常令人兴奋的功能–能够以“Cesium 3D Tiles”格式加载和查看3D内容!” ——QGIS官方的 宣传介绍。 体验一下,感觉就是如芒刺背、如坐针毡、如鲠在喉。 除非我电脑硬件有问题,要么QGIS的3Dtiles是真…

数据仓库高级面试题

数仓高内聚低耦合是怎么做的 定义 高内聚:强调模块内部的相对独立性,要求模块内部的元素尽可能的完成一个功能,不混杂其他功能,从而使模块保持简洁,易于理解和管理。 低耦合:模块之间的耦合度要尽可能的…

wpf devexpress 绑定数据编辑器

定义视图模型 打开前一个项目 打开RegistrationViewModel.cs文件添加如下属性到RegistrationViewModel类 [POCOViewModel] public class RegistrationViewModel {public static RegistrationViewModel Create() {return ViewModelSource.Create(() > new RegistrationVie…

OpenAI的Whisper蒸馏:蒸馏后的Distil-Whisper速度提升6倍

1 Distil-Whisper诞生 Whisper 是 OpenAI 研发并开源的一个自动语音识别(ASR,Automatic Speech Recognition)模型,他们通过从网络上收集了 68 万小时的多语言(98 种语言)和多任务(multitask&am…

Golang环境搭建Win10(简洁版)

Golang环境搭建Win10 Golang环境搭建(Win10)一、前言二、Golang下载三、配置环境变量3.1、配置GOROOT3.2、配置GOPATH3.3、配置GOPROXY代理 Golang环境搭建(Win10) 一、前言 Go(又称 Golang)是 Google 的 Robert Griesemer,Rob Pike 及 Ken…

大模型的语言能力

NLP作为一个领域为基础模型开辟了道路。虽然这些模型在标准基准测试中占据主导地位,但这些模型目前获得的能力与那些将语言描述为人类交流和思维的复杂系统的能力之间存在明显的差距。针对这一点,我们强调语言变异的全部范围(例如&#xff0c…

用照片预测人的年龄【图像回归】

在图像分类任务中,卷积神经网络 (CNN) 是非常强大的神经网络架构。 然而,鲜为人知的是,它们同样能够执行图像回归任务。 图像分类和图像回归任务之间的基本区别在于分类任务中的目标变量(我们试图预测的东西)不是连续…

Perl的LWP::UserAgent库爬虫程序怎么写

Perl的LWP::UserAgent库是一个用于发送HTTP请求的Perl模块。它可以用于编写Web爬虫、测试Web应用程序、自动化Web操作等。以下是一个简单的使用LWP::UserAgent库发送HTTP GET请求的Perl脚本的例子: #!/usr/bin/perluse strict; use warnings; use LWP::UserAgent;# …

向量数据库——AI时代的基座

1.前言 向量数据库在构建基于大语言模型的行业智能应用中扮演着重要角色。大模型虽然能回答一般性问题,但在垂直领域服务中,其知识深度、准确度和时效性有限。为了解决这一问题,企业可以利用向量数据库结合大模型和自有知识资产,…

PY32F002B从压缩包到实现串口printf输出

最近学习使用芯领的PY32F002B开发板,记录学习历程供有同样需求的人参考。 本文主要讲述利用开发板实现printf语句串口输出。 开发环境的初步搭建 官方提供了一个压缩文件,文件名py32f002B_231026.zip, 链接:https://pan.baidu.c…

什么是Selenium?如何使用Selenium进行自动化测试?

什么是 Selenium? Selenium 是一种开源工具,用于在 Web 浏览器上执行自动化测试(使用任何 Web 浏览器进行 Web 应用程序测试)。   等等,先别激动,让我再次重申一下,Selenium 仅可以测试Web应用…

internet download manager2024中文绿色版(IDM下载器)

在现代互联网时代,文件下载已经成为我们日常生活中必不可少的一项技能。无论是下载软件、音乐、视频还是其他文件,一个高效的下载方法能够为我们节省时间和精力。本文将为您提供一份简明扼要的下载教程,让您轻松掌握文件下载的技巧。 intern…

jsp中使用PDF.js实现pdf文件的预览

本文介绍的是在使用jsp作为模板引擎的spring-mvc项目中,如何利用 PDF.js实现pdf文件的预览。 1、下载 PDF.js Getting Started (mozilla.github.io) 下载解压后其中有两个目录,直接将这两个文件夹放到项目的web资源目录中。此时相当于把PDF.js这个项目也…

Vue h5页面手指滑动图片

场景: 四张图,要求随着手指滑动而滑动 代码: imgs是父盒子 poster-item是每个图片 .imgs {white-space: nowrap;overflow: hidden;overflow-x: auto;margin-bottom: 17px;.poster-item {display: inline-block;vertical-align: middle;wid…

NI USRP RIO软件无线电

NI USRP RIO软件无线电 NI USRP RIO是SDR游戏规则的改变者,它为无线通信设计人员提供了经济实惠的SDR和前所不高的性能,可帮助开发下一代5G无线通信系统。“USRP RIO”是一个术语,用于描述包含FPGA的USRP软件定义无线电设备,例如…

机器学习第9天:决策树分类

文章目录 机器学习专栏 介绍 基本思想 使用代码 深度探索 优点 估计概率 训练算法 CART成本函数 实例数与不纯度 正则化 在鸢尾花数据集上训练决策树 机器学习专栏 机器学习_Nowl的博客-CSDN博客 介绍 作用:分类 原理:构建一个二叉树&#…

数据结构与算法之美学习笔记:21 | 哈希算法(上):如何防止数据库中的用户信息被脱库?

目录 前言什么是哈希算法?应用一:安全加密应用二:唯一标识应用三:数据校验散列函数解答开篇内容小节 前言 本节课程思维导图 如果你是 一名工程师,你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下…

YOLO目标检测——无人机检测数据集下载分享【含对应voc、coco和yolo三种格式标签】

实际项目应用:无人机识别数据集说明:无人机检测数据集,真实场景的高质量图片数据,数据场景丰富标签说明:使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签…