数据结构与算法之美学习笔记:21 | 哈希算法(上):如何防止数据库中的用户信息被脱库?

目录

  • 前言
  • 什么是哈希算法?
  • 应用一:安全加密
  • 应用二:唯一标识
  • 应用三:数据校验
  • 散列函数
  • 解答开篇
  • 内容小节

前言

在这里插入图片描述
本节课程思维导图
在这里插入图片描述
如果你是 一名工程师,你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗?我今天不会重点剖析哈希算法的原理,也不会教你如何设计一个哈希算法,而是从实战的角度告诉你,在实际的开发中,我们该如何用哈希算法解决问题。

什么是哈希算法?

实际上,不管是“散列”还是“哈希”,这都是中文翻译的差别,英文其实就是“Hash”。所以,我们常听到有人把“散列表”叫作“哈希表”“Hash 表”,把“哈希算法”叫作“Hash 算法”或者“散列算法”。那到底什么是哈希算法呢?
将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。但是,要想设计一个优秀的哈希算法并不容易,根据我的经验,我总结了需要满足的几点要求:

  1. 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);
  2. 对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同;
  3. 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;
  4. 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。

我拿 MD5 这种哈希算法来具体说明一下。我们分别对“今天我来讲哈希算法”和“jiajia”这两个文本,计算 MD5 哈希值,得到两串看起来毫无规律的字符串(MD5 的哈希值是 128 位的 Bit 长度,为了方便表示,我把它们转化成了 16 进制编码)。可以看出来,无论要哈希的文本有多长、多短,通过 MD5 哈希之后,得到的哈希值的长度都是相同的,而且得到的哈希值看起来像一堆随机数,完全没有规律。

MD5("今天我来讲哈希算法") = bb4767201ad42c74e650c1b6c03d78fa
MD5("jiajia") = cd611a31ea969b908932d44d126d195b

通过哈希算法得到的哈希值,很难反向推导出原始数据。比如上面的例子中,我们就很难通过哈希值“a1fb91ac128e6aa37fe42c663971ac3d”反推出对应的文本“我今天讲哈希算法”。
哈希算法要处理的文本可能是各种各样的。对于非常长的文本,比如,我们把今天这篇包含 4000 多个汉字的文章,用 MD5 计算哈希值,用不了 1ms 的时间。
哈希算法的应用非常非常多,我选了最常见的七个,分别是安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。这节我们先来看前四个应用。

应用一:安全加密

说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。第一点很好理解,加密的目的就是防止原始数据泄露,所以很难通过哈希值反向推导原始数据,这是一个最基本的要求。所以我着重讲一下第二点。实际上,不管是什么哈希算法,我们只能尽量减少碰撞冲突的概率,理论上是没办法做到完全不冲突的。
为什么哈希算法无法做到零冲突?我们知道,哈希算法产生的哈希值的长度是固定且有限的。比如前面举的 MD5 的例子,哈希值是固定的 128 位二进制串,能表示的数据是有限的,最多能表示 2^128 个数据,而我们要哈希的数据是无穷的。基于鸽巢原理,如果我们对 2^128+1 个数据求哈希值,就必然会存在哈希值相同的情况。这里你应该能想到,一般情况下,哈希值越长的哈希算法,散列冲突的概率越低。

2^128=340282366920938463463374607431768211456

不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1/2^128。如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是很难被破解的。
除此之外,没有绝对安全的加密。越复杂、越难破解的加密算法,需要的计算时间也越长。比如 SHA-256 比 SHA-1 要更复杂、更安全,相应的计算时间就会比较长。密码学界也一直致力于找到一种快速并且很难被破解的哈希算法。

应用二:唯一标识

如果要在海量的图库中,搜索一张图是否存在,。那我们该如何搜索呢?
我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。
如果还想继续提高效率,我们可以把每个图片的唯一标识,和相应的图片文件在图库中的路径信息,都存储在散列表中。当要查看某个图片是不是在图库中的时候,我们先通过哈希算法对这个图片取唯一标识,然后在散列表中查找是否存在这个唯一标识。如果不存在,那就说明这个图片不在图库中;如果存在,我们再通过散列表中存储的文件路径,获取到这个已经存在的图片,跟现在要插入的图片做全量的比对,看是否完全一样。如果一样,就说明已经存在;如果不一样,说明两张图片尽管唯一标识相同,但是并不是相同的图片。

应用三:数据校验

BT 下载的原理是基于 P2P 协议的。我们从多个机器上并行下载一个 2GB 的电影,这个电影文件可能会被分割成很多文件块(比如可以分成 100 块,每块大约 20MB)。等所有的文件块都下载完成之后,再组装成一个完整的电影文件就行了。
我们知道,网络传输是不安全的,下载的文件块有可能是被宿主机器恶意修改过的,又或者下载过程中出现了错误,所以下载的文件块可能不是完整的。如果我们没有能力检测这种恶意修改或者文件下载出错,就会导致最终合并后的电影无法观看,甚至导致电脑中毒。
现在的问题是,如何来校验文件块的安全、正确、完整呢?我来说其中的一种思路。我们通过哈希算法,对 100 个文件块分别取哈希值,并且保存在种子文件中。我们在前面讲过,哈希算法有一个特点,对数据很敏感。只要文件块的内容有一丁点儿的改变,最后计算出的哈希值就会完全不同。所以,当文件块下载完成之后,我们可以通过相同的哈希算法,对下载好的文件块逐一求哈希值,然后跟种子文件中保存的哈希值比对。如果不同,说明这个文件块不完整或者被篡改了,需要再重新从其他宿主机器上下载这个文件块。

散列函数

散列函数也是哈希算法的一种应用。
散列函数是设计一个散列表的关键。它直接决定了散列冲突的概率和散列表的性能。不过,相对哈希算法的其他应用,散列函数对于散列算法冲突的要求要低很多。即便出现个别散列冲突,只要不是过于严重,我们都可以通过开放寻址法或者链表法解决。
不仅如此,散列函数对于散列算法计算得到的值,是否能反向解密也并不关心。散列函数中用到的散列算法,更加关注散列后的值是否能平均分布,也就是,一组数据是否能均匀地散列在各个槽中。除此之外,散列函数执行的快慢,也会影响散列表的性能,所以,散列函数用的散列算法一般都比较简单,比较追求效率。

解答开篇

我们可以通过哈希算法,对用户密码进行加密之后再存储,不过最好选择相对安全的加密算法,比如 SHA 等(因为 MD5 已经号称被破解了)。不过仅仅这样加密之后存储就万事大吉了吗?
字典攻击你听说过吗?如果用户信息被“脱库”,黑客虽然拿到是加密之后的密文,但可以通过“猜”的方式来破解密码,这是因为,有些用户的密码太简单。比如很多人习惯用 00000、123456 这样的简单数字组合做密码,很容易就被猜中。
那我们就需要维护一个常用密码的字典表,把字典中的每个密码用哈希算法计算哈希值,然后拿哈希值跟脱库后的密文比对。如果相同,基本上就可以认为,这个加密之后的密码对应的明文就是字典中的这个密码。针对字典攻击,我们可以引入一个盐(salt),跟用户的密码组合在一起,增加密码的复杂度。我们拿组合之后的字符串来做哈希算法加密,将它存储到数据库中,进一步增加破解的难度。不过我这里想多说一句,我认为安全和攻击是一种博弈关系,不存在绝对的安全。所有的安全措施,只是增加攻击的成本而已。

内容小节

今天的内容比较偏实战,我讲到了哈希算法的四个应用场景。我带你来回顾一下。
第一个应用是唯一标识,哈希算法可以对大数据做信息摘要,通过一个较短的二进制编码来表示很大的数据。
第二个应用是用于校验数据的完整性和正确性。
第三个应用是安全加密,我们讲到任何哈希算法都会出现散列冲突,但是这个冲突概率非常小。越是复杂哈希算法越难破解,但同样计算时间也就越长。所以,选择哈希算法的时候,要权衡安全性和计算时间来决定用哪种哈希算法。
第四个应用是散列函数,这个我们前面讲散列表的时候已经详细地讲过,它对哈希算法的要求非常特别,更加看重的是散列的平均性和哈希算法的执行效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149025.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLO目标检测——无人机检测数据集下载分享【含对应voc、coco和yolo三种格式标签】

实际项目应用:无人机识别数据集说明:无人机检测数据集,真实场景的高质量图片数据,数据场景丰富标签说明:使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签…

Unity开发之C#基础-集合(字典)(Dictionary)

前言 Hello 兄弟们 一转眼俩月又过去了(失踪人口回归) 不出意外的是出意外了 失踪了两个月 有点对不起我这为数不多的粉丝们 实不相瞒忙的焦头烂额 也没心情写博客 实在对不住各位 好了长话短说 今天这篇文章是讲解c#当中的新的一种集合的表现&#xff…

富友支付最近“战况”

中国人民银行上海市分行官网在昨天披露了一份关于富友支付的行政处罚公示信息。富友支付因为涉嫌违法违规的反洗钱行为而遭到中国央行的罚款。 罚款金额达到455万,可谓相当可观。 当支付机构受到罚款处罚时,一些公司会选择在收到罚单后发表声明&#xff…

2023年亚太杯数学建模亚太赛ABC题思路资料汇总贴

下文包含:2023年亚太杯数学建模亚太赛A- C题思路解析、选题建议、代码可视化及如何准备数学建模竞赛(23号发) C君将会第一时间发布选题建议、所有题目的思路解析、相关代码、参考文献、参考论文等多项资料,帮助大家取得好成绩。2…

【GEE】基于GEE进行非监督学习

1 简介与摘要 之前写了多季节叠加的监督学习,所以这次简单写一个非监督学习吧。。 这次为了简单明了,就不整那么多虚的了,在这里我不叠图层了,有需要的可以参考前一篇博客自己添加输入的图层。 2 制作输入影像 首先&#xff0c…

97.qt qml-自定义Table之实现ctrl与shift多选

我们之前实现了:93.qt qml-自定义Table优化(新增:水平拖拽/缩放自适应/选择使能/自定义委托)-CSDN博客 实现选择使能的时候,我们只能一行行去点击选中,非常麻烦,所以本章我们实现ctrl多选与shift多选、 所以在Table控件新增两个属性: 1.实现介绍 ctrl多选实现原理:当我…

模块化Common JS 和 ES Module

目录 历程 1.几个函数:全局变量的污染,模块间没有联系 2.对象:暴露成员,外部可修改 3.立即执行函数:闭包实现模块私有作用域 common JS module和Module 过程 模块依赖:深度优先遍历、父 -> 子 -…

uni-app:前端实现心跳机制(全局)+局部页面控制心跳暂停和重新心跳

一、App.vue全局中写入心跳 在data中定义变量heartbeatTimer,便于暂停心跳使用在onLaunch中引用开始心跳的方法startHeartbeat()写入开始心跳方法写入暂停心跳方法写入请求后端刷心跳机制 定义变量 // 在全局设置的心跳机制中添加一个变量来保存定时器的标识 data(…

035、目标检测-物体和数据集

之——物体检测和数据集 目录 之——物体检测和数据集 杂谈 正文 1.目标检测 2.目标检测数据集 3.目标检测和边界框 4.目标检测数据集示例 杂谈 目标检测是计算机视觉中应用最为广泛的,之前所研究的图片分类等都需要基于目标检测完成。 在图像分类任务中&am…

html在线生成二维码(附源码)

文章目录 1.设计来源1.1 主界面1.2 美化功能 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_43151418/article/details/134458927 html二维码生成(附源码),生成二…

2023年中国农业机器人行业市场规模及发展趋势分析[图]

农业机器人是一种机器,是机器人在农业生产中的运用,是一种可由不同程序软件控制,以适应各种作业,能感觉并适应作物种类或环境变化,有检测(如视觉等)和演算等人工智能的新一代无人自动操作机械。 农业机器人分类 资料来源&#xf…

Redux-状态管理组件

一、简介 react中的状态只属于某个组件。而Redux是一个全局管理js状态的架构,让组件通信更加容易。 之前是状态在所有组件间传递,而redux通过store来实现这个功能。 Redux特性: 1.Single source Of truth,通过store唯一维护状态…

多视图聚类的论文阅读(一)

当聚类的方式使用的是某一类预定义好的相似性度量时, 会出现如下情况: 数据聚类方面取得了成功,但它们通常依赖于预定义的相似性度量,而这些度量受原始方法的影响:当输入维数相对较高时,往往是无效的。 1. Deep Mult…

python爬取快手视频

原理 F12点击graphql能够看到里面有若干视频信息,一会儿要取其中的url地址 右键复制cURL 然后进入到这个转换器连接 https://curlconverter.com/python/ 点击这个连接复制上述信息,然后就能解析处下面的代码,拷贝到你的项目中替换cookies,headers,json_data 源代码 …

[和ChatGPT学编程]Python Requests 简介

requests 是一个流行的 Python 库,用于发送 HTTP 请求。它提供了简洁而友好的 API,使得发送 HTTP 请求变得简单而直观。requests 具有许多强大的功能,适用于各种 HTTP 请求场景,包括 GET、POST、PUT、DELETE 等。 目录 requests 库…

【Django-DRF用法】多年积累md笔记,第3篇:Django-DRF的序列化和反序列化详解

本文从分析现在流行的前后端分离Web应用模式说起,然后介绍如何设计REST API,通过使用Django来实现一个REST API为例,明确后端开发REST API要做的最核心工作,然后介绍Django REST framework能帮助我们简化开发REST API的工作。 全…

Docker Swarm: 容器编排的力量和优势深度解析

文章目录 Docker Swarm的核心概念1. 节点(Node)2. 服务(Service)3. 栈(Stack) 使用Docker Swarm1. 初始化Swarm2. 加入节点3. 创建服务4. 扩展和缩减服务5. 管理栈6. 管理服务更新 Docker Swarm的优势深度解…

分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测

分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测 目录 分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测(完整源码和数据) 2.多…

Kubernetes学习-概念2

参考:关于 cgroup v2 | Kubernetes 关于 cgroup v2 在 Linux 上,控制组约束分配给进程的资源。 kubelet 和底层容器运行时都需要对接 cgroup 来强制执行为 Pod 和容器管理资源, 这包括为容器化工作负载配置 CPU/内存请求和限制。 Linux 中…

BatchNormalization:解决神经网络中的内部协变量偏移问题

ICML2015 截至目前51172引 论文链接 代码连接(planing) 文章提出的问题 减少神经网络隐藏层中的”内部协变量偏移”问题。 在机器学习领域存在“协变量偏移”问题,问题的前提是我们划分数据集的时候,训练集和测试集往往假设是独立同分布(i.i.d)的,这种独立同分布更有利于…