六大排序(插入排序、希尔排序、冒泡排序、选择排序、堆排序、快速排序)未完

文章目录

  • 排序
    • 一、 排序的概念
      • 1.排序:
      • 2.稳定性:
      • 3.内部排序:
      • 4.外部排序:
    • 二、插入排序
      • 1.直接插入排序
      • 2.希尔排序
    • 三、选择排序
      • 1.直接选择排序
          • 方法一
          • 方法二
          • 直接插入排序和直接排序的区别
      • 2.堆排序
    • 四、交换排序
      • 1.冒泡排序
      • 2.快速排序
          • 1.挖坑法
          • 2.Hoare法
          • 3.前后指针法
          • 4.快速排序的优化
            • 方法一、三数取中法选基准值
            • 方法二、递归到最小区间时、用插入排序
          • 5.快速排序非递归实现

排序


一、 排序的概念

1.排序:

  • 一组数据按递增/递减排序

2.稳定性:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 待排序的序列中,存在多个相同的关键字,拍完序后,相对次序保持不变,就是稳定的

3.内部排序:

  • 数据元素全部放在内存中的排序

4.外部排序:

  • 数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

二、插入排序

1.直接插入排序

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

和整理扑克牌类似,将乱序的牌,按值的大小,插入整理好的顺序当中

从头开始,比最后一个小的话依次向前挪,直到大于之前牌时,进行插入

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1.如果只有一个值,则这个值有序,所以插入排序, i 从下标1开始,把后面的无序值插入到前面的有序当中

2.j = i-1,是i的前一个数,先用tmp将 i位置的值(要插入的值)先存起来,比较tmp和j位置的值

3.如果tmp的值比 j位置的值小,说明要向前插入到有序的值中,把 j位置的值后移,移动到 j+1的位置,覆盖掉 i 的值

4.j 下标向前移动一位,再次和 tmp 比较

5.如果tmp的值比 j 位置的值大,说明找到了要插入的位置就在当前j位置之后,把tmp存的值,放到 j+1的位置

6.如果tmp中存的值比有序的值都小,j位置的值依次向后移动一位,j不停减1,直到排到第一位的数移动到第二位,j的下标从0移动到-1,循环结束,最后将tmp中存的值,存放到 j+1的位置,也就是0下标

    public void insertSort(int[] array) {for (int i = 1; i < array.length; i++) {int tmp = array[i];//tmp存储i的值int j = i - 1;for (; j >= 0; j--) {if (tmp < array[j]) {array[j + 1] = array[j];} else {// array[j+1] = tmp;break;}}array[j + 1] = tmp;}}

插入就是为了维护前面的有序

  • 元素越接近有序,直接插入排序算法的时间效率越高

  • 时间复杂度O( N 2 )

  • 空间复杂度O ( 1 )

  • 稳定性:稳定

    如果一个排序是稳定的,可以改变实现为不稳定的

    如果是不稳定的排序,则没有办法改变

2.希尔排序

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

希尔排序shellSort 叫缩小增量排序,是对直接插入排序的优化,先分组,对每组插入排序,让整体逐渐有序

利用了插入排序元素越有序越快的特点

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 先确定一个整数,把待排序数分成多个组,每个组中的数距离相同,
  • 对每一组进行排序,然后再次分组排序,减少分组数,组数多,每组数据就少
  • 找到分组数=1时,基本有序了,只需要再排一次插入排序即可

一开始组数多,每组数据少,可以保证效率

随着组数的减少,每组数据变多,数据越来越有序,同样保证了效率

到达1分组之前,前面的排序都是预排序

    public static void shellSort2(int[] array) {int gap = array.length;while (gap > 1) { //gap>1时缩小增量gap /= 2;//直接在循环内进行最后一次排序shell(array, gap);}}/**** 希尔排序* 时间复杂度O(N^1.3---N^1.5)* @param array*/public static void shellSort1(int[] array) {int gap = array.length;while (gap > 1) { //gap>1时缩小增量shell(array, gap);gap /= 2;//gap==1时不进入循环,再循环为再次排序}shell(array, gap);//组数为1时,进行插入排序}public static void shell(int[] arr, int gap) {//本质上还是插入排序,但是i和j的位置相差为组间距for (int i = gap ; i < arr.length; i++) {int tmp = arr[i];int j = i-gap;for (; j >=0; j -= gap) {if (tmp<arr[j]){arr[j+gap] = arr[j];}else {break;}}arr[j+gap] = tmp;}}
  • 时间复杂度:O( N^1.3 ^) ---- O( N^1.5 ^)
  • 空间复杂的:O(1)
  • 稳定性:不稳定

三、选择排序

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 在待排序序列中,找到最小值(大)的下标,和排好序的末尾交换,放到待排序列的开头,直到全部待排序元素排完

1.直接选择排序

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

方法一

    /*** 选择排序** @param array*/public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i + 1; j < array.length; j++) {//找最小值if (array[j] < array[minIndex]) {minIndex = j;//只要比minIndex小,放进去}}//循环走完后,minIndex存的就是当前未排序的最小值//将当前i的值和找到的最小值进行交换swap(array,i,minIndex);}}public static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

1.遍历数组长度,i从0开始

2.每次循环,都由minIndex = i 来记录最小值的下标

3.j 从i+1开始遍历,只要比记录的最小值小,就让minIndex记录。找到未排序中的最小值,进行交换

4.如果遍历完后,未排序中没有比minIndex存的值小,i的值就是最小值,i++;

  • 效率低, 如果较为有序的序列,在交换时会破坏有序性
  • 时间复杂度:O ( N2 )
  • 空间复杂的:O ( 1 )
  • 稳定性:不稳定
方法二
  • 上面的方法,只是先选出最小的值,然后和i的位置交换,

  • 进行优化:在遍历时选出最大值和最小值,和收尾进行交换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

   /*** 选择排序---选最大值和最小值** @param array*/public static void selectSort2(int[] array) {int left = 0;int right = array.length - 1;while (left < right) {int minIndex = left;int maxIndex = left;//选出最大值和最小值for (int i = left + 1; i <= right; i++) {if (array[i] > array[maxIndex]) {maxIndex = i;}if (array[i] < array[minIndex]) {minIndex = i;}}//用最大值和最小值交换首位swap(array, left, minIndex);//把left和最小值交换//如果left恰好就是最大值,就有可能把最大值换到minIndex的位置if(left == maxIndex){maxIndex = minIndex;//最大值位置不是left了,而是换到了minIndex}swap(array, right, maxIndex);left++;right--;}}

1.在遍历的过程中,选出最大值的下标和最小值的下标

2.将left和最小值进行交换

3.如果left恰好为最大值,left和最小值交换完成后,最大值就在原来最小值的位置上,

4.maxIndex = minIndex,修正最大值的位置

4.将right和最大值进行交换

直接插入排序和直接排序的区别
  • 和插入排序不同的是,插入排序会持续对已排序的数进行比较,把合适的数放在合适的位置
  • 直接选择排序就是不断找到最小的值,依次放在排好序的末尾,不干预排好的序列

2.堆排序

  • 时间复杂度: O( N * log N)
  • 空间复杂的:O (1)
  • 升序:建大堆

  • 降序:建小堆

  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

将一组数据从小到大排序 ——> 建立大根堆

为什么不用小根堆:小根堆只能保证,根比左右小,不能保证左右孩子的大小顺序,并且要求对数组本身进行排序

  • 大根堆,保证堆顶元素是最大值,最大值跟最后一个元素交换,将最大的放在最后,usedSize–;
  • 向下调整:调整0下标的树,维护大根堆,最大值继续交换到最后一个有效元素的位置
  • 从后往前,从大到小依次排列,保证在原来数组本身进行排序
    /*** 堆排序* 时间复杂度: N*logN* 空间复杂的:o(1)** @param array*/public static void heapSort(int[] array) {createBigHeap(array);//创建大根堆int end = array.length-1;while (end>0){swap(array,0,end);//堆顶元素和末尾互换shiftDown(array,0,end);//维护大根堆end--;}}/*** 创建大根堆** @param array*/public static void createBigHeap(int[] array) {//最后一个结点的下标 = array.length - 1//它的父亲结点的下标就为array.length - 1 - 1) / 2for (int parent = (array.length - 1 - 1) / 2; parent >= 0; parent--) {shiftDown(array, parent, array.length);}}/*** 向下调整** @param array* @param parent* @param len*///向下调整,每棵树从父结点向下走public static void shiftDown(int[] array, int parent, int len) {int child = parent * 2 + 1;while (child < len) {//child < len:最起码要有一个左孩子if (child + 1 < len && array[child] < array[child + 1]) {child++;}//child + 1<len:保证一定有右孩子的情况下,和右孩子比较//拿到子节点的最大值if (array[child] > array[parent]) {swap(array, child, parent);parent = child;//交换完成后,让parent结点等于等于当前child结点child = 2 * parent + 1;//重新求子节点的位置,再次进入循环交换} else {break;//比父结点小,结束循环}}}
  • 时间复杂度: O( N * log 2N)
  • 空间复杂的:O (1)
  • 稳定性:不稳定

四、交换排序

  • 根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置
  • 将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

1.冒泡排序

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

    /*** 冒泡排序* 时间复杂度 n^2* 空间复杂度  1* @param array*/public static void bubbleSort(int[]array){for (int i = 0; i < array.length-1; i++) {//趟数boolean flg =false;for (int j = 0; j < array.length-1-i; j++) {if (array[j]>array[j+1]){swap(array,j,j+1);flg = true;}}if (flg == false){return;}}}

1.遍历 i 代表交换的趟数,遍历 j 进行两两交换

2.j < array.length-1-i 是对于趟数的优化,每走一趟,交换就少一次

3.boolean flg =false;当两两交换时,flg变为true

4.进一步优化:如果遍历完,没发生交换,flg还是false,直接返回,排序结束

  • 时间复杂度:O ( N2 )
  • 空间复杂度:O ( 1 )
  • 稳定性:稳定

2.快速排序

  • 时间复杂度:

    最好情况:O (N*log2N) :树的高度为log2N,每一层都是N

    最坏情况:O (N2):有序、逆序的情况下,没有左树,只有右树,单分支树,树的高度是N,每一层都是N

  • 空间复杂的:

    最好情况:O (log2N):满二叉树(均匀分割待排序的序列,效率最高)树高为 log2N

    最坏情况:O(N):单分支树,树高为N

  • 稳定性:不稳定

  • 二叉树结构的交换排序方法

  • 任取一个待排序元素作为基准值,把序列一分为二,左子序都比基准值小,右子序都比基准值大,左右两边再重复进行

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 左边找比基准值大的,右边找比基准值小的
1.挖坑法

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 基准值位置挖一个坑,后面找一个比基准值小的把坑埋上
  • 前面找一个比基准值大的,埋后面的坑
  • 当l==r时,把基准值填入剩下的坑中

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 左右两边重复进行上述步骤,直到排完为止
  • 左右两边都以同样的方法进行划分,运用递归来实现
    /*** 快速排序* 时间复杂度:N*log~2~N* 空间复杂度* * @param array*/public static void quickSort(int[] array) {quick(array, 0, array.length - 1);}private static void quick(int[] array, int start, int end) {if (start >= end) {return;//结束条件// start == end,说明只剩一个了,是有序的,返回//start > end ,说明此时的基准值在开头或者末尾//在开头:start不变,end=pivot-1,start > end ,end=-1 没有左树//在结尾:end不变,start = pivot+1,start > end,超出索引,没有右树}//不断递归quickint pivot = partition(array, start, end);// 进行排序,划分找到pivot//然后递归划分法左边,递归划分的右边quick(array, start, pivot - 1);quick(array, pivot + 1, end);}// ---挖坑法  划分,返回基准值private static int partition(int[] array, int left, int right) {int tmp = array[left];//挖一个坑,取left位置为基准值while (left < right) {//在右边找一个比基准值小的把坑填上while (left < right && array[right] >= tmp) {//防止越界right--;}array[left] = array[right];//找到比tmp小的数,填坑,//在左边找一个比tmp大的值,填到右边的坑while (left < right && array[left] <= tmp) {//防止越界left++;}array[right] = array[left];}//如果相遇了,退出循环array[left] = tmp;//填坑return left;}
  • 先划分序列,递归左边,然后再递归右边

  • 递归结束条件:

    start == end时,说明只剩一个了,是有序的,返回
    start > end 时 ,说明此时的基准值在开头或者末尾

    如果基准值在开头:start不变,end=pivot-1,start > end ,end=-1 没有左树
    如果基准值在结尾:end不变,start = pivot+1,start > end,超出索引,没有右树


2.Hoare法

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 不同的方法,找出基准值,排的序列是不一样的

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • i记录基准值一开始在left位置的下标
  • r找到比基准值小的停下来,l找到比基准值大的停下来,互相交换
  • l和r相遇的时候,把i 记录基准值的初始下标和相遇位置交换

以左边为基准,先找右边再找左边,相遇的位置就是以右边为基准的值,要比基准小,才能交换

    /*** Hoare法 划分排序找基准值* @param array* @param left* @param right* @return*/private static int partition2(int[] array, int left, int right) {int tmp = array[left];int i  = left;//记录基准值一开始在left位置的下标while (left < right) {while (left < right && array[right] >= tmp) {right--;}while (left < right && array[left] <= tmp) {left++;}swap(array,left,right);}swap(array,i,left);return left;}
3.前后指针法

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • prev记录了比key小的最后一个位置
  • cur去找比key值小的,找到后,放到prev的下一个位置
  • 最后找到基准值,并且基准值的左边都比它小,右边都比他大
    /*** 前后指针法,划分排序找基准值** @param array* @param left* @param right* @return*/private static int partition3(int[] array, int left, int right) {int prev = left; //prev从left位置开始,left为当前的基准值int cur = left + 1;//cur在prev的后一个while (cur <= right) {//遍历完当前数组段if (array[cur] < array[left] && array[++prev] != array[cur]) {//只要cur指向的值小于left位置的基准值//并且prev++后不等于cur的值swap(array, cur, prev);//将cur和prev位置的值交换//cur++;}//如果cur的值大于基准值,或者prev下一位的值等于cur,cur后移cur++;}//cur越界,循环结束,最后,交换基准值和prev位置的值//prev记录的就是比基准值小的最后一个数swap(array, prev, left);return prev;//prev为基准值}
4.快速排序的优化
  • 时间复杂度:

    最好情况:O (N*log2N) :树的高度为log2N,每一层都是N

    最坏情况:O (N2):有序、逆序的情况下,没有左树,只有右树,单分支树,树的高度是N,每一层都是N

  • 空间复杂的:

    最好情况:O (log2N):满二叉树(均匀分割待排序的序列,效率最高)树高为 log2N

    最坏情况:O(N):单分支树,树高为N

  • 稳定性:不稳定

  • 快速排序有可能发生栈溢出异常,需要进行优化

  • 所以要能均匀分割待排序的序列

递归的次数多了,会导致栈溢出,所以优化的方向就是减少递归的次数

方法一、三数取中法选基准值
方法二、递归到最小区间时、用插入排序
5.快速排序非递归实现

的值等于cur,cur后移
cur++;
}
//cur越界,循环结束,最后,交换基准值和prev位置的值
//prev记录的就是比基准值小的最后一个数
swap(array, prev, left);
return prev;//prev为基准值
}

#####  4.快速排序的优化- 时间复杂度:> 最好情况:O (N*log~2~N)   :树的高度为log~2~N,每一层都是N>>  最坏情况:O (N^2^):有序、逆序的情况下,没有左树,只有右树,单分支树,树的高度是N,每一层都是N >> - 空间复杂的:> 最好情况:O (log~2~N):满二叉树(均匀分割待排序的序列,效率最高)树高为 log~2~N>> 最坏情况:O(N):单分支树,树高为N- 稳定性:不稳定- 快速排序有可能发生栈溢出异常,需要进行优化
- 所以要能均匀分割待排序的序列递归的次数多了,会导致栈溢出,所以优化的方向就是减少递归的次数###### 方法一、三数取中法选基准值###### 方法二、递归到最小区间时、用插入排序##### 5.快速排序非递归实现## 五、归并排序 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/148730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“新KG”视点 | 知识图谱与大语言模型协同模式探究

OpenKG 大模型专辑 导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力&#xff0c;知识图谱则丰富了表示知识的方式&#xff0c;两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下&#xff0c;OpenKG组织…

数字IC前端学习笔记:异步复位,同步释放

相关阅读 数字IC前端https://blog.csdn.net/weixin_45791458/category_12173698.html?spm1001.2014.3001.5482 异步复位 异步复位是一种常见的复位方式&#xff0c;可以使电路进入一个可知的状态。但是不正确地使用异步复位会导致出现意想不到的错误&#xff0c;复位释放便是…

读像火箭科学家一样思考笔记03_第一性原理(上)

1. 思维的两种障碍 1.1. 为什么知识会成为一种缺陷而非一种美德 1.1.1. 知识是一种美德 1.1.2. 知识同样的特质也会把它变成一种缺点 1.1.3. 知识确实是个好东西&#xff0c;但知识的作用应该是给人们提供信息&#xff0c;而不是起约束作用 1.1.4. 知识应该启发智慧&#…

新版JetBrains ToolBox【Windows】修改应用安装位置

WIndows下新版的JetBrainse ToolBox 无法修改应用安装路径 关闭 ToolBox 应用修改配置文件.settings.json 路径&#xff1a;C:\Users\用户名\AppData\Local\JetBrains\Toolbox "install_location": "xxx",

多线程概述

文章目录 线程是什么线程有什么作用线程和进程的区别多线程相较于进程优势 在Java这个圈子中,多进程用的并不多,因为进程是一个重量级操作,进程是资源分配的基本单位,申请资源是一个比较消耗时间的操作. 线程是什么 线程是一个独立的执行流,可以被独立调度到CPU上执行 线程是…

计算机毕业设计选题推荐-个人健康微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

腾讯微服务平台TSF学习笔记(一)--如何使用TSF的Sidecar过滤器实现mesh应用的故障注入

Mesh应用的故障注入 故障注入前世今生Envoy设置故障注入-延迟类型设置故障注入-延迟类型并带有自定义状态码总结 故障注入前世今生 故障注入是一种系统测试方法&#xff0c;通过引入故障来找到系统的bug&#xff0c;验证系统的稳健性。istio支持延迟故障注入和异常故障注入。 …

黑马React18: 基础Part 1

黑马React: 基础1 Date: November 15, 2023 Sum: React介绍、JSX、事件绑定、组件、useState、B站评论 React介绍 概念: React由Meta公司研发&#xff0c;是一个用于 构建Web和原生交互界面的库 优势: 1-组件化的开发方式 2-优秀的性能 3-丰富的生态 4-跨平台开发 开发环境搭…

SpringBoot中日志的使用log4j

SpringBoot中日志的使用log4j 项目中日志系统是必不可少的&#xff0c;目前比较流行的日志框架有 log4j、logback 等&#xff0c;这两个框架的作者是同一个 人&#xff0c;Logback 旨在作为流行的 log4j 项目的后续版本&#xff0c;从而恢复 log4j 离开的位置。 另外 slf4j(…

vulhub redis-4-unacc

环境搭建 cd vulhub/redis/4-unacc docker-compose up -d 漏洞复现 检测 redis-cli -h ip 使用redis工具 工具地址&#xff1a;https://github.com/vulhub/redis-rogue-getshell 下载完成后&#xff0c;先进入RedisModulesSDK/exp/ 目录进行make操作 获得exp.so后可以进行…

【开发流程】持续集成、持续交付、持续部署

一、开发工作流程 假设把开发流程分为以下几个阶段&#xff1a; 编码 -> 构建 -> 集成 -> 测试 -> 交付 -> 部署 如上图所示&#xff0c;持续集成、持续交付、持续部署有着不同的软件自动交付周期。 二、持续集成、持续交付、持续部署 1、持续集成 持续集成…

服务器数据恢复—热备盘同步中断导致Raid5数据丢失的数据恢复案例

服务器数据恢复环境&#xff1a; 某单位一台服务器上有一组raid5阵列&#xff0c;该raid5阵列有15块成员盘。上层是一个xfs裸分区&#xff0c;起始位置是0扇区。 服务器故障&检测&#xff1a; 服务器raid5阵列中有硬盘性能表现不稳定&#xff0c;但是由于管理员长时间没有关…

nodejs+vue实验室上机管理系统的设计与实现-微信小程序-安卓-python-PHP-计算机毕业设计

用户&#xff1a;管理员、教师、学生 基础功能&#xff1a;管理课表、管理机房情况、预约机房预约&#xff1b;权限不同&#xff0c;预约类型不同&#xff0c;教师可选课堂预约和个人&#xff1b;课堂预约。 在实验室上机前&#xff0c;实验室管理员需要对教务处发来的上机课表…

浅析AcrelEMS-CIA机场智慧能源管平台解决方案-安科瑞 蒋静

1 概述 机场智慧能源管平台解决方案对机场范围内变电站内的高低压配电设备 、 发电机、变压器 、UPS、EPS 、广场照明 、 室内照明 、通风及排水等机电设备进行实时分布式监控和集中管理 , 实现无人值守 , 确保高速公路安全畅通 , 提高 自动化管理水平 , 降低机电设备的运行维…

SpringBoot常见注解

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a;每天一个知识点 ✨特色专栏&#xff1a…

程序员告诉你:人工智能是什么?

随着科技的快速发展&#xff0c;人工智能这个词汇已经逐渐融入了我们的日常生活。然而&#xff0c;对于大多数人来说&#xff0c;人工智能仍然是一个相对模糊的概念。 首先&#xff0c;让我们从人工智能的定义开始。人工智能是一种模拟人类智能的技术&#xff0c;它涵盖了多个领…

flink入门

1.安装flink&#xff0c;启动flink 文档地址&#xff1a;Apache Flink 1.3-SNAPSHOT 中文文档: Apache Flink 中文文档 代码&#xff1a;GitHub - apache/flink: Apache Flink 2. 打开端口 端口号&#xff0c; 启动jar ### 切换到flink 目录bin下 [rootlocalhost ~]# cd /…

参考文献格式

目录 期刊会议预印本&#xff08;如arxiv&#xff09; 期刊 找不到页码可以在文献中查看bibtex格式&#xff0c;其中有 外文期刊可在web of science中查找卷号、期号和所在页数&#xff1a; [1] ZHANG F, HU Z Q, FU Y K, et al. A New Identification Method for Surface …

【0到1学习Unity脚本编程】第一人称视角的角色控制器

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;【0…

自动驾驶学习笔记(九)——车辆控制

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo Beta宣讲和线下沙龙》免费报名—>传送门 文章目录 前言 控制器设计 比例积分微分控制 线性…