论文笔记——BiFormer

Title: BiFormer: Vision Transformer with Bi-Level Routing Attention
Paper: https://arxiv.org/pdf/2303.08810.pdf
Code:  https://github.com/rayleizhu/BiFormer

一、前言

众所周知,Transformer相比于CNNs的一大核心优势便是借助自注意力机制的优势捕捉长距离上下文依赖。正所谓物极必反,在原始的 Transformer 架构设计中,这种结构虽然在一定程度上带来了性能上的提升,但却会引起两个老生常态的问题:

  1. 内存占用大

  2. 计算代价高

因此,有许多研究也在致力于做一些这方面的优化工作,包括但不仅限于将注意力操作限制在:

  • inside local windows, e.g., Swin transformer and Crossformer;

  • axial stripes, e.g., Cswin transformer;

  • dilated windows, e.g., Maxvit and Crossformer;

图片

Figure 1. Vanilla attention and its sparse variants.

让我们先简单的看下上图:其中图(a)是原始的注意力实现,其直接在全局范围内操作,导致高计算复杂性和大量内存占用;而对于图(b)-(d),这些方法通过引入具有不同手工模式的稀疏注意力来减轻复杂性,例如局部窗口、轴向条纹和扩张窗口等;而图(e)则是基于可变形注意力通过不规则网格来实现图像自适应稀疏性;

总的来说,作者认为以上这些方法大都是通过将 手工制作 和 与内容无关 的稀疏性引入到注意力机制来试图缓解这个问题。因此,本文通过双层路由(bi-level routing)提出了一种新颖的动态稀疏注意力(dynamic sparse attention ),以实现更灵活的计算分配内容感知,使其具备动态的查询感知稀疏性,如图(f)所示。

此外,基于该基础模块,本文构建了一个名为BiFormer的新型通用视觉网络架构。由于 BiFormer 以查询自适应的方式关注一小部分相关标记,而不会分散其他不相关标记的注意力,因此它具有良好的性能和高计算效率。最后,通过在图像分类、目标检测和语义分割等多项计算机视觉任务的实证结果充分验证了所提方法的有效性。

二、方法

Bi-Level Routing Attention

为了缓解多头自注意力(Multi-Head Self-Attention, MHSA)的可扩展性问题,先前的一些方法提出了不同的稀疏注意力机制,其中每个查询只关注少量的键值对,而非全部。然而,这些方法有两个共性问题:

  1. 要么使用手工制作的静态模式(无法自适应);

  2. 要么在所有查询中共享键值对的采样子集(无法做到互不干扰);

为此,作者探索了一种动态的、查询感知的稀疏注意力机制,其关键思想是在粗糙区域级别过滤掉大部分不相关的键值对,以便只保留一小部分路由区域(这不就把冗余的信息干掉了吗老铁们)。其次,作者在这些路由区域的联合中应用细粒度的token-to-token注意力。

整个算法的伪代码流程如下所示:

图片

可以看到,整个模块主要包含三个组件,即:

  • Region partition and input projection

  • Region-to-region routing with directed graph

  • Token-to-token attention

简单梳理下。假设我们输入一张特征图,通过线性映射获得QKV;其次,我们通过领接矩阵构建有向图找到不同键值对对应的参与关系,可以理解为每个给定区域应该参与的区域;最后,有了区域到区域路由索引矩阵 ,我们便可以应用细粒度的token-to-token注意力了。

具体的实现还是有些复杂,可以参考代码慢慢理解,这里看的也是云里雾里的。

图片

Bi-Level Routing Attention

上面是 BRA 模块的示意图。从图中可以看出,该方法是通过收集前 k 个相关窗口中的键值对,并利用稀疏性操作直接跳过最不相关区域的计算来节省参数量和计算量。值得一提的是,以上操作涉及 GPU 友好的密集矩阵乘法,利于服务器端做推理加速。

BiFormer

图片

基于BRA模块,本文构建了一种新颖的通用视觉转换器BiFormer。如上图所示,其遵循大多数的vision transformer架构设计,也是采用四级金字塔结构,即下采样32倍。

具体来说,BiFormer在第一阶段使用重叠块嵌入,在第二到第四阶段使用块合并模块来降低输入空间分辨率,同时增加通道数,然后是采用连续的BiFormer块做特征变换。需要注意的是,在每个块的开始均是使用  的深度卷积来隐式编码相对位置信息。随后依次应用BRA模块和扩展率为  的 2 层 多层感知机(Multi-Layer Perceptron, MLP)模块,分别用于交叉位置关系建模和每个位置嵌入。

图片

上表展示了不同模型变体的网络宽度和深度。其中FLOP是基于  输入计算的。

三、实验

图片

Table 2. Comparison of different backbones on ImageNet-1K.

所有模型都在分辨率为  的图像上进行训练和评估。其中星号表示该模型是使用标记标签进行训练的。据笔者所知,这是在没有额外训练数据或训练技巧所能取得的最佳结果。此外,使用基于标记的蒸馏技术,BiFormer-S的准确率可以进一步提高到 !

图片

可以看到,本文方法貌似对小目标检测效果比较好。这可能是因为BRA模块是基于稀疏采样而不是下采样,一来可以保留细粒度的细节信息,二来同样可以达到节省计算量的目的。

图片

为了进一步了解双层路由注意力的工作原理,作者将路由区域和注意力响应进行可视化。从图中我们可以清楚地观察到语义相关区域已被成功定位。例如,在第一个场景中的街景所示,如果查询位置在建筑物或树上,则对应的路由区域覆盖相同或相似的实体。而在第二个室内场景中,当我们将查询位置放在鼠标上时,路由区域包含主机、键盘和显示器的一部分,即使这些区域彼此不相邻。这意味着双层路由注意力可以捕获远距离对上下文依赖。

四、总结

本文提出了一种双层路由注意力模块,以动态、查询感知的方式实现计算的有效分配。其中,BRA模块的核心思想是在粗区域级别过滤掉最不相关的键值对。它是通过首先构建和修剪区域级有向图,然后在路由区域的联合中应用细粒度的token-to-token注意力来实现的。值得一提的是,该模块的计算复杂度可压缩至 !最后,基于该模块本文构建了一个金字塔结构的视觉Transformer——BiFormer,它在四种流行的视觉任务、图像分类、目标检测、实例分割和语义分割方面均表现出卓越的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/147372.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于STM32的外部中断(EXTI)在嵌入式系统中的应用

外部中断(External Interrupt,EXTI)是STM32嵌入式系统中常见且重要的功能之一。它允许外部事件(例如按键按下、传感器触发等)通过适当的引脚触发中断,从而应用于各种嵌入式系统中。在STM32微控制器中&#…

Vulkan渲染引擎开发教程 一、开发环境搭建

一 安装 Vulkan SDK Vulkan SDK 就是我们要搞的图形接口 首先到官网下载SDK并安装 https://vulkan.lunarg.com/sdk/home 二 安装 GLFW 窗口库 GLFW是个跨平台的小型窗口库,也就是显示窗口,图形的载体 去主页下载并安装,https://www.glfw.…

【自然语言处理(NLP)实战】LSTM网络实现中文文本情感分析(手把手与教学超详细)

目录 引言: 1.所有文件展示: 1.中文停用词数据(hit_stopwords.txt)来源于: 2.其中data数据集为chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。 2.安装依赖库&am…

Spring 事务和事务传播机制

一、再谈事务 到这里 JavaEE 的学习基本是已经接近了尾声,相信大家对事务已然有了一些理解。当然这里我们还是简单的说明一下: 事务就是将一组操作封装成一个执行单元,要么全部成功,要么全部失败。比较典型的应用场景是转账&…

Vite - 配置 - 文件路径别名的配置

为什么要配置别名 别名的配置,主要作用是为了缩短代码中的导入路径。例如有如下的项目目录: project-name| -- src| -- a| --b| --c| --d| --e| -- abc.png| -- index.html| -- main.js如果想在 main.js 文件中使用 abc.png ,则使用的路径是 &#xff1…

二元分类模型评估方法

文章目录 前言一、混淆矩阵二、准确率三、精确率&召回率四、F1分数五、ROC 曲线六、AUC(曲线下面积)七、P-R曲线类别不平衡问题中如何选择PR与ROC 八、 Python 实现代码混淆矩阵、命中率、覆盖率、F1值ROC曲线、AUC面积 指标 公式 意义 真正例 (TP)被…

DNS1(Bind软件)

名词解释 1、DNS(Domain Name System) DNS即域名系统,它是一个分层的分布式数据库,存储着IP地址与主机名的映射 2、域和域名 域为一个标签,而有多个标签域构成的称为域名。例如hostname.example.com,其…

gRPC 的原理 介绍带你从头了解gRPC

gRPC 的原理 什么是gRPC gRPC的官方介绍是:gRPC是一个现代的、高性能、开源的和语言无关的通用 RPC 框架,基于 HTTP2 协议设计,序列化使用PB(Protocol Buffer),PB 是一种语言无关的高性能序列化框架,基于 HTTP2PB 保…

Sentinel 流控规则

Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 SpringbootDubboNacos 集成 Sentinel&…

实用技巧:在C和cURL中设置代理服务器爬取www.ifeng.com视频

概述: 网络爬虫技术作为一种自动获取互联网数据的方法,在搜索引擎、数据分析、网站监测等领域发挥着重要作用。然而,面对反爬虫机制、网络阻塞、IP封禁等挑战,设置代理服务器成为解决方案之一。代理服务器能够隐藏爬虫的真实IP地…

Word中NoteExpress不显示的问题

首先确认我们以及安装了word插件 我们打开word却没有。此时我们打开:文件->选项->加载项 我们发现被禁用了 选择【禁用项目】(如果没有,试一试【缓慢且禁用的加载项】),点击转到 选择启用 如果没有禁用且没有出…

C++加持让python程序插上翅膀——利用pybind11进行c++和python联合编程示例

目录 0、前言1、安装 pybind11库c侧python侧 2、C引入bybind11vs增加相关依赖及设置cpp中添加头文件及导出模块cpp中添加numpy相关数据结构的接收和返回编译生成dll后改成导出模块同名文件的.pyd 3、python调用c4、C引入bybind11 0、前言 在当今的计算机视觉和机器学习领域&am…

CSDN每日一题学习训练——Python版(简化路径,不同的二叉搜索树)

版本说明 当前版本号[20231116]。 版本修改说明20231116初版 目录 文章目录 版本说明目录简化路径题目解题思路代码思路参考代码 不同的二叉搜索树题目解题思路代码思路参考代码 简化路径 题目 给你一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路…

Mysql数据库 16.SQL语言 数据库事务

一、数据库事务 数据库事务介绍——要么全部成功要么全部失败 我们把完成特定的业务的多个数据库DML操作步骤称之为一个事务 事务——就是完成同一个业务的多个DML操作 例: 数据库事务四大特性 原子性(A):一个事务中的多个D…

(三)什么是Vite——Vite 主体流程(运行npm run dev后发生了什么?)

vite分享ppt,感兴趣的可以下载: ​​​​​​​Vite分享、原理介绍ppt 什么是vite系列目录: (一)什么是Vite——vite介绍与使用-CSDN博客 (二)什么是Vite——Vite 和 Webpack 区别&#xff0…

vscode 配置 lua

https://luabinaries.sourceforge.net/ 官网链接 主要分为4个步骤 下载压缩包,然后解压配置系统环境变量配置vscode的插件测试 这里你可以选择用户变量或者系统环境变量都行。 不推荐空格的原因是 再配置插件的时候含空格的路径 会出错,原因是空格会断…

linux 网络 cat /proc/net/dev 查看测试网络丢包情况

可以通过 cat /proc/net/dev 查看测试网络丢包情况,drop关键字,查看所有网卡的丢包情况 还可以看其他数据, /proc/net/下面有如下文件

性能测试 —— Jmeter接口处理不低于200次/秒-场景

需求:期望某个接口系统的处理能力不低于200次/秒,如何设计? ①这个场景是看服务器对某个接口的TPS值是否能大于等于200,就可以了; ②系统处理能力:说的就是我们性能测试中的TPS; ③只要设计一…

Visual Studio Code---介绍

0 Preface/Foreword 1、安装VScode 官网:Download Visual Studio Code - Mac, Linux, Windows 文档:Documentation for Visual Studio Code 1.1 优点 Intelligent code completion: code smarter with intellisense - completions for variables, me…

哈希

欢迎来到Cefler的博客😁 🕌博客主页:那个传说中的man的主页 🏠个人专栏:题目解析 🌎推荐文章:题目大解析(3) 目录 👉🏻unordered系列关联式容器un…