代码随想录算法训练营第五十八天丨 动态规划part18

739. 每日温度

思路

首先想到的当然是暴力解法,两层for循环,把至少需要等待的天数就搜出来了。时间复杂度是O(n^2)

那么接下来在来看看使用单调栈的解法。

 什么时候用单调栈呢?

通常是一维数组,要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置,此时我们就要想到可以用单调栈了。时间复杂度为O(n)。

例如本题其实就是找找到一个元素右边第一个比自己大的元素,此时就应该想到用单调栈了。

那么单调栈的原理是什么呢?为什么时间复杂度是O(n)就可以找到每一个元素的右边第一个比它大的元素位置呢?

单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素高的元素,优点是整个数组只需要遍历一次。

更直白来说,就是用一个栈来记录我们遍历过的元素,因为我们遍历数组的时候,我们不知道之前都遍历了哪些元素,以至于遍历一个元素找不到是不是之前遍历过一个更小的,所以我们需要用一个容器(这里用单调栈)来记录我们遍历过的元素。

在使用单调栈的时候首先要明确如下几点:

  • 单调栈里存放的元素是什么?

单调栈里只需要存放元素的下标 i 就可以了,如果需要使用对应的元素,直接T[i]就可以获取。

  • 单调栈里元素是递增呢? 还是递减呢?

注意以下讲解中,顺序的描述为 从栈头到栈底的顺序,因为单纯的说从左到右或者从前到后,不说栈头朝哪个方向的话,大家一定比较懵。

这里我们要使用递增循序(再强调一下是指从栈头到栈底的顺序),因为只有递增的时候,栈里要加入一个元素i的时候,才知道栈顶元素在数组中右面第一个比栈顶元素大的元素是i。

即:如果求一个元素右边第一个更大元素,单调栈就是递增的,如果求一个元素右边第一个更小元素,单调栈就是递减的。

文字描述理解起来有点费劲,接下来我画了一系列的图,来讲解单调栈的工作过程,大家再去思考,本题为什么是递增栈。

使用单调栈主要有三个判断条件。

  • 当前遍历的元素T[i]小于栈顶元素T[st.top()]的情况
  • 当前遍历的元素T[i]等于栈顶元素T[st.top()]的情况
  • 当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况

把这三种情况分析清楚了,也就理解透彻了

接下来我们用temperatures = [73, 74, 75, 71, 71, 72, 76, 73]为例来逐步分析,输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。


首先先将第一个遍历元素加入单调栈

739.每日温度1


加入T[1] = 74,因为T[1] > T[0](当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况)。

我们要保持一个递增单调栈(从栈头到栈底),所以将T[0]弹出,T[1]加入,此时result数组可以记录了,result[0] = 1,即T[0]右面第一个比T[0]大的元素是T[1]。

739.每日温度2


加入T[2],同理,T[1]弹出

739.每日温度3


加入T[3],T[3] < T[2] (当前遍历的元素T[i]小于栈顶元素T[st.top()]的情况),加T[3]加入单调栈。

739.每日温度4


加入T[4],T[4] == T[3] (当前遍历的元素T[i]等于栈顶元素T[st.top()]的情况),此时依然要加入栈,不用计算距离,因为我们要求的是右面第一个大于本元素的位置,而不是大于等于!

739.每日温度5


加入T[5],T[5] > T[4] (当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况),将T[4]弹出,同时计算距离,更新result 

739.每日温度6


T[4]弹出之后, T[5] > T[3] (当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况),将T[3]继续弹出,同时计算距离,更新result 

739.每日温度7


直到发现T[5]小于T[st.top()],终止弹出,将T[5]加入单调栈

739.每日温度8


加入T[6],同理,需要将栈里的T[5],T[2]弹出

739.每日温度9


同理,继续弹出

739.每日温度10


此时栈里只剩下了T[6]

739.每日温度11


加入T[7], T[7] < T[6] 直接入栈,这就是最后的情况,result数组也更新完了。

739.每日温度12

此时可能就疑惑了,那result[6] , result[7]怎么没更新啊,元素也一直在栈里。

其实定义result数组的时候,就应该直接初始化为0,如果result没有更新,说明这个元素右面没有更大的了,也就是为0。

以上在图解的时候,已经把,这三种情况都做了详细的分析。

  • 情况一:当前遍历的元素T[i]小于栈顶元素T[st.top()]的情况
  • 情况二:当前遍历的元素T[i]等于栈顶元素T[st.top()]的情况
  • 情况三:当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况

通过以上过程,大家可以自己再模拟一遍,就会发现:只有单调栈递增(从栈口到栈底顺序),就是求右边第一个比自己大的,单调栈递减的话,就是求右边第一个比自己小的。

代码如下:

class Solution {public int[] dailyTemperatures(int[] temperatures) {int[] answer = new int[temperatures.length];//小的话一直压栈记录,大的话就下表相减求距离/**如果当前遍历的元素 大于栈顶元素,表示 栈顶元素的 右边的最大的元素就是 当前遍历的元素,所以弹出 栈顶元素,并记录如果栈不空的话,还要考虑新的栈顶与当前元素的大小关系否则的话,可以直接入栈。注意,单调栈里 加入的元素是 下标。*/Stack<Integer> st = new Stack<>();st.push(0);for (int i = 1; i < temperatures.length; i++) {if (temperatures[i] > temperatures[st.peek()]){//如果当前元素大于栈顶元素//遍历栈,如果碰到当前元素小于等于栈顶元素时,将当前元素的下标放入栈中//如果当前元素大于栈顶元素,栈顶元素为下标的值为 i- st.popwhile (!st.isEmpty() && temperatures[i] > temperatures[st.peek()]){if (temperatures[i] > temperatures[st.peek()]){int stIndex = st.pop();answer[stIndex] = i - stIndex;}}st.push(i);}else {//当前元素小于等于栈顶元素st.push(i);}}return answer;}
}

496.下一个更大元素 I

思路

这题秒了基本没看卡哥的题解,但思路基本也是与卡哥的一致。但需要注意的细节点是,每次 i 遍历完之后需要对栈stack 进行清空处理,防止本次遗留元素影响到下一次层的循环中。

并且我将结果数组 res[] 均初始化为了-1,具体思路见代码:

class Solution {public int[] nextGreaterElement(int[] nums1, int[] nums2) {//nums1 是 nums2 的子集int[] res = new int[nums1.length];Arrays.fill(res,-1);Stack<Integer> st = new Stack<>();//找出num1[i] == num2[j]的j 值for (int i = 0; i < nums1.length; i++) {for (int j = 0; j < nums2.length; j++) {if (nums1[i] == nums2[j]){//确定 nums2[j] 的 下一个更大元素st.push(j);}if (!st.isEmpty() && nums2[j] > nums2[st.peek()]){res[i] = nums2[j];st.pop();}}st.clear();}return res;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146426.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器视觉选型-什么时候用远心镜头

物体厚 当被检测物体厚度较大&#xff0c;需要检测不止一个平面时&#xff0c;典型应用如食品盒&#xff0c;饮料瓶等。 物体位置变化 当被测物体的摆放位置不确定&#xff0c;可能跟镜头成一定角度时。 物体上下跳动 当被测物体在被检测过程中上下跳动&#xff0c;如生产线上下…

人工智能基础_机器学习040_Sigmoid函数详解_单位阶跃函数与对数几率函数_伯努利分布---人工智能工作笔记0080

然后我们再来详细说一下Sigmoid函数,上面的函数的公式 我们要知道这里的,Sigmoid函数的意义,这逻辑斯蒂回归的意义就是,在多元线性回归的基础上,把 多元线性回归的结果,缩放到0到1之间对吧,根据中间的0.5为分类,小于0.5的一类,大于的一类, 这里的h theta(x) 就是概率函数 然…

婴儿沐浴座椅上架亚马逊美国站安全标准要求ASTM F1967-19测试,CPC认证

亚马逊婴儿沐浴座椅产品认证 在亚马逊上架的婴儿沐浴座椅产品&#xff0c;亚马逊会要求店家上传相关的产品测试报告&#xff0c;若被抽查到没有相关认证的产品将面临产品被下架或罚款等处罚&#xff01; 婴儿沐浴座椅产品示例&#xff1a; 婴儿沐浴座椅是一种用于浴缸、盥洗盆…

milvus数据管理-压缩数据

Milvus 默认支持自动数据压缩。您可以 配置 Milvus 以启用或禁用 压缩 和自动压缩。 如果自动压缩被禁用&#xff0c;您仍然可以手动压缩数据。 1.手动压缩数据 压缩请求是异步处理的&#xff0c;因为它们通常需要花费很长时间。 from pymilvus import Collection collection…

微软宣布计划在 Windows 10 版本 22H2 中引入 AI 助手 Copilot

根据之前的传言&#xff0c;微软宣布计划在 Windows 10 版本 22H2 中引入 AI 助手 Copilot。Copilot 将包含在 Windows 10 家庭版和专业版中。该更新的发布日期尚未公布&#xff0c;但预计将在不久的将来发布。 在一份新闻稿中&#xff0c;微软表示在向 Windows 11 用户提供 Co…

什么是模糊测试?

背景&#xff1a;近年来&#xff0c;随着信息技术的发展&#xff0c;各种新型自动化测试技术如雨后春笋般出现。其中&#xff0c;模糊测试&#xff08;fuzz testing&#xff09;技术开始受到行业关注&#xff0c;它尤其适用于发现未知的、隐蔽性较强的底层缺陷。这里&#xff0…

C语言--给定一行字符串,获取其中最长单词【图文详解】

一.问题描述 给定一行字符串,获取其中最长单词。 比如&#xff1a;给定一行字符串&#xff1a; hello wo shi xiao xiao su 输出&#xff1a;hello 二.题目分析 “打擂台算法”&#xff0c;具体内容小伙伴们可以参考前面的内容。 三.代码实现 char* MaxWord(const char* str)…

Windows GitBash解决Github添加密钥时提示Key is already in use的问题

通过添加多密钥实现 ssh-agent bashssh-keygen -t rsa -C ‘xx1’ -f ~/.ssh/id_rsa_xx1ssh-keygen -t rsa -C ‘xx2’ -f ~/.ssh/id_rsa_xx2ssh-add id_rsa_xx1ssh-add id_rsa_xx2 vim ~/.ssh/config Host github_xx1HostName github.comUser gitIdentityFile ~/.ssh/id_rs…

【科技素养】蓝桥杯STEMA 科技素养组模拟练习试卷F

1、常见的加密算法可以分为对称加密算法和非对称加密算法&#xff0c;以下关于它们的描述正确的是 A、AES是一种常见的非对称加密算法 B、凯撒密码是一种非对称加密 C、非对称加密算法的解密使用的秘钥与加密不同 D、对称加密算法无法被暴力破解 答案&#xff1a;C 2、12根…

Linux CentOS 8(MariaDB的数据类型)

Linux CentOS 8&#xff08;MariaDB的数据类型&#xff09; 目录 一、项目描述二、相关知识三、项目分析3.1 数据类型的分类3.2 数据类型属性 一、项目描述 Jan16公司为满足部门之间数据共享、减少数据冗余度和保持数据独立性等要求&#xff0c;需要对数据库中的数据类型拥有一…

Apache DolphinScheduler在通信行业的多集群统一建设与管理实践

背景介绍 为什么我们考虑构建统一的调度平台&#xff1f; 主要原因是&#xff1a;我们公司的大数据中心目前拥有七个大数据集群&#xff0c;这些集群分布在不同的机房&#xff0c;例如内蒙、南京、苏州和广州。而且&#xff0c;这些机房之间的网络并不互通。如果每个集群都独立…

ssh连接Windows主机

教程 参考了&#x1f446;教程 首先需要先安装openssh 然后按照教程走到 SSH 服务器的初始配置 管理员身份启动 PowerShell&#xff0c;执行以下指令&#xff1a; # 先启动 sshd Start-Service sshd # 这条命令是可选&#xff0c;但是推荐的&#xff0c;可以让 sshd 自动启动…

Pytorch多GPU并行训练: DistributedDataParallel

1 模型并行化训练 1.1 为什么要并行训练 在训练大型数据集或者很大的模型时一块GPU很难放下&#xff0c;例如最初的AlexNet就是在两块GPU上计算的。并行计算一般采取两个策略&#xff1a;一个是模型并行&#xff0c;一个是数据并行。左图中是将模型的不同部分放在不同GPU上进…

[开源]基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案

原文&#xff1a;[开源]基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案 一飞开源&#xff0c;介绍创意、新奇、有趣、实用的开源应用、系统、软件、硬件及技术&#xff0c;一个探索、发现、分享、使用与互动交流的开源技术社区平台。致力于打造活力开源社区&#xff0…

Unity UI 完全解决方案

Unity UI 完全解决方案 在我学习开发 unity 游戏尝试进行 UI 的构建的过程中&#xff0c;尝试寻找当前 Unity 最为推荐的 UI 构建方式&#xff0c;或者说最优的框架方案。 在中文网里寻找了半天&#xff0c;总感觉很多文章和教程给了方案&#xff0c;但又说不清楚为啥用这个方…

pytorch文本分类(一):文本预处理

pytorch文本分类&#xff08;一&#xff09;&#xff1a;文本预处理 本文为自己在鲸训练营答题总结&#xff0c;作业练习都在和鲸社区数据分析协作平台 ModelWhale 上。 &#x1f6a9;学习任务原链接在这里 相关数据链接&#xff1a;https://pan.baidu.com/s/1iwE3LdRv3uAkGGI…

OpenCV遍历图像像素

引言&#xff1a; 为了构建计算机视觉应用程序&#xff0c;需要学会访问图像内容&#xff0c;有时也要修改或创建图像&#xff0c;如何操作图像的像素&#xff0c;就需要遍历一幅图像并处理每一个像素。现在我们就来介绍OpenCV三种图像像素的遍历方法。 一、 用cv::Mat类的at方…

Redis为什么是单线程的?Redis性能为什么很快?

Redis为什么是单线程的&#xff1f;Redis性能为什么很快&#xff1f; 一、Redis的高并发和快速原因 1.redis是基于内存的&#xff0c;内存的读写速度非常快&#xff08;纯内存&#xff09;。 2.redis是单线程的&#xff0c;省去了很多上下文切换线程的时间&#xff08;避免线…

基础课6——开放领域对话系统架构

开放领域对话系统是指针对非特定领域或行业的对话系统&#xff0c;它可以与用户进行自由的对话&#xff0c;不受特定领域或行业的知识和规则的限制。开放领域对话系统需要具备更广泛的语言理解和生成能力&#xff0c;以便与用户进行自然、流畅的对话。 与垂直领域对话系统相比…

需求工程>系统建议方案

根据项目规模的大小&#xff0c;系统方案既可以单独形成文档&#xff08;系统建议方案报告、系统方案说明书&#xff09;&#xff0c;也可以合并到可行性研究报告中。如果单独形成文档&#xff0c;其内容和格式与可行性研究报告也是类似的。作为一个正式文档&#xff0c;系统建…