Python | 机器学习之SVM支持向量机

🌈个人主页:Sarapines Programmer
🔥 系列专栏:《人工智能奇遇记》
🔖少年有梦不应止于心动,更要付诸行动。

目录结构


1. 机器学习之SVM支持向量机概念

1.1 机器学习

1.2 SVM支持向量机

2. SVM支持向量机算法

2.1 实验目的

2.2 实验准备

2.3 实验原理

2.4 实验内容

2.5 实验心得

致读者


1. 机器学习之SVM支持向量机概念

1.1 机器学习

传统编程要求开发者明晰规定计算机执行任务的逻辑和条条框框的规则。然而,在机器学习的魔法领域,我们向计算机系统灌输了海量数据,让它在数据的奔流中领悟模式与法则,自主演绎未来,不再需要手把手的指点迷津。

机器学习,犹如三千世界的奇幻之旅,分为监督学习、无监督学习和强化学习等多种类型,各具神奇魅力。监督学习如大师传道授业,算法接收标签的训练数据,探索输入与输出的神秘奥秘,以精准预测未知之境。无监督学习则是数据丛林的探险者,勇闯没有标签的领域,寻找隐藏在数据深处的秘密花园。强化学习则是一场与环境的心灵对话,智能体通过交互掌握决策之术,追求最大化的累积奖赏。

机器学习,如涓涓细流,渗透各行各业。在图像和语音识别、自然语言处理、医疗诊断、金融预测等领域,它在智慧的浪潮中焕发生机,将未来的可能性绘制得更加丰富多彩。

1.2 SVM支持向量机

支持向量机(Support Vector Machine,简称SVM)是一种广泛应用于分类和回归分析的监督学习算法。其基本原理是通过在特征空间中找到一个最优的超平面,将不同类别的数据点分隔开。

在二分类问题中,SVM的目标是找到一个能够将两类数据点分隔开的超平面,使得两侧距离最近的数据点到超平面的距离(即间隔)最大。这些最靠近超平面的数据点被称为支持向量。超平面的选择不仅要使得间隔最大,还要满足不同类别的数据点被正确分类,即位于超平面两侧的点应被分到不同的类别。

SVM可以通过核函数来处理非线性问题,将数据映射到高维空间,从而找到一个在高维空间中的超平面来完成分类。常用的核函数有线性核、多项式核、径向基核等。

SVM在实际应用中表现出色,尤其在数据维度较高、样本数量不是很大的情况下。它对于处理线性和非线性问题都有很好的效果,是一个强大而灵活的分类算法。

机器学习源文件icon-default.png?t=N7T8https://download.csdn.net/download/m0_57532432/88521177?spm=1001.2014.3001.5503


2. SVM支持向量机算法

2.1 实验目的

(1)加深对监督学习的理解和认识;

(2)掌握SVM分类器的设计方法;

(3)通过鸢尾花的花萼(sepal)和花瓣(petal)的长和宽,建立SVM分类器来判断样本属于山鸢尾(Iris Setosa)、变色鸢尾(Iris Versicolor)还是维吉尼亚鸢尾(Iris Virginica)。


2.2 实验准备

(1)安装机器学习必要库,如NumPy、Pandas、Scikit-learn等;

(2)配置环境用来运行 Python、Jupyter Notebook和相关库等内容。


2.3 实验原理

SVM(支持向量机)的实验原理基于其在特征空间中找到一个最优的超平面,以有效地对数据进行分类。以下是SVM实验的基本原理:

  1. 数据准备: 首先,需要一个带标签的训练数据集,其中包含了输入特征和相应的类别标签。

  2. 超平面的选择: SVM的目标是找到一个超平面,能够将不同类别的数据点分隔开,并使得两侧最靠近超平面的数据点到超平面的距离最大。这个最优的超平面可以通过求解一个凸优化问题来得到。

  3. 间隔最大化: SVM的关键思想是通过间隔最大化来确保分类的鲁棒性。间隔是指超平面两侧距离最近的数据点到超平面的距离。最优的超平面是使得间隔最大的超平面。

  4. 支持向量: 在最优超平面的两侧,存在一些被称为支持向量的数据点。这些支持向量是离超平面最近的数据点,它们对于定义最优超平面至关重要。

  5. 核函数: SVM可以通过核函数来处理非线性问题。核函数能够将数据映射到更高维的空间,使得在这个高维空间中存在一个线性超平面,从而在原始空间中完成非线性分类。

  6. 训练和预测: 通过解决优化问题,找到最优超平面的参数。在训练阶段,算法学习如何调整超平面的参数以实现最佳的分类。在预测阶段,新的数据点通过超平面的位置来进行分类。

SVM的实验原理主要依赖于数学优化的方法,通过数学模型和凸优化理论来找到一个最优的决策边界,以实现对数据的有效分类。


2.4 实验内容

使用Python手动实现SVM支持向量机代码如下:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, precision_score, recall_score
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_irisclass SVM:def __init__(self, learning_rate=0.0001, lambda_param=0.1, num_iterations=2000):self.learning_rate = learning_rateself.lambda_param = lambda_paramself.num_iterations = num_iterationsself.W = Noneself.b = Nonedef fit(self, X, y):y = np.where(y <= 0, -1, 1)n_samples, n_features = X.shapeself.W = np.zeros(n_features)self.b = 0for _ in range(self.num_iterations):for idx, x_i in enumerate(X):condition = y[idx] * (np.dot(x_i, self.W) - self.b) >= 1if condition:self.W -= self.learning_rate * (2 * self.lambda_param * self.W)else:self.W -= self.learning_rate * (2 * self.lambda_param * self.W - np.dot(x_i, y[idx]))self.b -= self.learning_rate * y[idx]def predict(self, X):linear_output = np.dot(X, self.W) - self.breturn np.sign(linear_output)

1. 导入鸢尾花数据集;

# Step 1: 导入鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

2. 数据归一化

# Step 2: 数据归一化
scaler = StandardScaler()
X = scaler.fit_transform(X)

3. 训练集和测试数据集划分;

# Step 3: 训练集和测试数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2022)

4. 评价分类结果TP、FN、FP、TN以及精确率和召回率;

# Step 4: 评价分类结果
def evaluate_results(y_true, y_pred):confusion = confusion_matrix(y_true, y_pred)tp = confusion[1, 1]fn = confusion[1, 0]fp = confusion[0, 1]tn = confusion[0, 0]precision = precision_score(y_true, y_pred, average='weighted')recall = recall_score(y_true, y_pred, average='weighted')print("Confusion Matrix:")print(confusion)print("True Positives:", tp)print("False Negatives:", fn)print("False Positives:", fp)print("True Negatives:", tn)print("Precision:", precision)print("Recall:", recall)# 创建SVM对象
svm = SVM()

5. 加入松弛因子后,与未加松弛因子之前效果做对比。

# Step 5: 加入松弛因子后的对比
svm_no_slack = SVM(lambda_param=0.0)  # 未加入松弛因子
svm_slack = SVM(lambda_param=101)     # 加入松弛因子# 训练模型(未加入松弛因子)
svm_no_slack.fit(X_train, y_train)# 预测(未加入松弛因子)
y_pred_slack = svm_no_slack.predict(X_test)# 评价分类结果(未加入松弛因子)
print("=====未加入松弛因子=====")
evaluate_results(y_test, y_pred_slack)# 训练模型(加入松弛因子)
svm_slack.fit(X_train, y_train)# 预测(加入松弛因子)
y_pred_slack = svm_slack.predict(X_test)# 评价分类结果(加入松弛因子)
print("=====加入松弛因子后=====")
evaluate_results(y_test, y_pred_slack)

实验结果

未加入松弛因子:

图5-1

加入松弛因子:

图5-2

完整代码如下:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, precision_score, recall_score
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_irisclass SVM:def __init__(self, learning_rate=0.0001, lambda_param=0.1, num_iterations=2000):self.learning_rate = learning_rateself.lambda_param = lambda_paramself.num_iterations = num_iterationsself.W = Noneself.b = Nonedef fit(self, X, y):y = np.where(y <= 0, -1, 1)n_samples, n_features = X.shapeself.W = np.zeros(n_features)self.b = 0for _ in range(self.num_iterations):for idx, x_i in enumerate(X):condition = y[idx] * (np.dot(x_i, self.W) - self.b) >= 1if condition:self.W -= self.learning_rate * (2 * self.lambda_param * self.W)else:self.W -= self.learning_rate * (2 * self.lambda_param * self.W - np.dot(x_i, y[idx]))self.b -= self.learning_rate * y[idx]def predict(self, X):linear_output = np.dot(X, self.W) - self.breturn np.sign(linear_output)# Step 1: 导入鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# Step 2: 数据归一化
scaler = StandardScaler()
X = scaler.fit_transform(X)# Step 3: 训练集和测试数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2022)# Step 4: 评价分类结果
def evaluate_results(y_true, y_pred):confusion = confusion_matrix(y_true, y_pred)tp = confusion[1, 1]fn = confusion[1, 0]fp = confusion[0, 1]tn = confusion[0, 0]precision = precision_score(y_true, y_pred, average='weighted')recall = recall_score(y_true, y_pred, average='weighted')print("Confusion Matrix:")print(confusion)print("True Positives:", tp)print("False Negatives:", fn)print("False Positives:", fp)print("True Negatives:", tn)print("Precision:", precision)print("Recall:", recall)# 创建SVM对象
svm = SVM()# Step 5: 加入松弛因子后的对比
svm_no_slack = SVM(lambda_param=0.0)  # 未加入松弛因子
svm_slack = SVM(lambda_param=101)     # 加入松弛因子# 训练模型(未加入松弛因子)
svm_no_slack.fit(X_train, y_train)# 预测(未加入松弛因子)
y_pred_slack = svm_no_slack.predict(X_test)# 评价分类结果(未加入松弛因子)
print("=====未加入松弛因子=====")
evaluate_results(y_test, y_pred_slack)# 训练模型(加入松弛因子)
svm_slack.fit(X_train, y_train)# 预测(加入松弛因子)
y_pred_slack = svm_slack.predict(X_test)# 评价分类结果(加入松弛因子)
print("=====加入松弛因子后=====")
evaluate_results(y_test, y_pred_slack)

代码分析:

1.导入必要的库和模块

  1. numpy:用于数值计算的Python库。
  2. train_test_split:用于将数据集划分为训练集和测试集的函数。
  3. confusion_matrix、precision_score、recall_score:用于评估分类结果的指标。
  4. StandardScaler:用于数据归一化的类。
  5. load_iris:用于加载鸢尾花数据集的函数。

2.定义支持向量机类(SVM)

  1. __init__方法:初始化SVM对象的学习率(learning_rate)、正则化参数(lambda_param)和迭代次数(num_iterations)等属性。
  2. fit方法:用于训练SVM模型。接受特征数据(X)和标签(y)作为输入。该方法使用梯度下降法更新模型的权重(W)和偏置(b)。
  3. predict方法:用于预测新的样本。接受特征数据(X)作为输入,通过计算线性输出(linear_output)并对其进行符号化处理,返回预测结果。

3.加载鸢尾花数据集

  1. 使用load_iris函数加载鸢尾花数据集,将特征数据存储在X中,将标签存储在y中。

4.数据归一化

  1. 使用StandardScaler类创建一个归一化器对象(scaler)。
  2. 调用fit_transform方法对特征数据进行归一化,将归一化后的数据保存回X中。

5.训练集和测试数据集划分

  1. 使用train_test_split函数将数据集按照指定的比例划分为训练集和测试集。将训练集特征数据存储在X_train中,训练集标签存储在y_train中,测试集特征数据存储在X_test中,测试集标签存储在y_test中。

6.评价分类结果的函数

  1. 定义了一个名为evaluate_results的函数,用于评估分类结果。接受真实标签(y_true)和预测标签(y_pred)作为输入。
  2. 使用confusion_matrix函数计算混淆矩阵,并从中提取真阳性(tp)、假阴性(fn)、假阳性(fp)和真阴性(tn)的数量。
  3. 使用precision_score和recall_score函数计算精确率(precision)和召回率(recall)。

7.输出混淆矩阵、真阳性、假阴性、假阳性、真阴性、精确率和召回率的结果。

8.创建SVM对象

  1. 使用默认参数创建一个SVM对象(svm)。

9.加入松弛因子后的对比

  1. 创建两个SVM对象:一个没有加入松弛因子(svm_no_slack)的对象,另一个加入了松弛因子(svm_slack)的对象。
  2. lambda_param参数控制松弛因子的大小,0.0表示没有松弛因子,101表示加入了较大的松弛因子。

10.训练模型(未加入松弛因子)

  1. 使用训练集数据(X_train和y_train)调用fit方法训练未加入松弛因子的SVM模型。

11.预测(未加入松弛因子)

  1. 使用测试集数据(X_test)调用predict方法进行预测,将预测结果存储在y_pred_slack中。

12.评价分类结果(未加入松弛因子)

  1. 调用evaluate_results函数,传入真实标签(y_test)和预测标签(y_pred_slack),输出评价结果。

13.训练模型(加入松弛因子)

  1. 使用训练集数据(X_train和y_train)调用fit方法训练加入松弛因子的SVM模型。

14.预测(加入松弛因子)

  1. 使用测试集数据(X_test)调用predict方法进行预测,将预测结果存储在y_pred_slack中。

15.评价分类结果(加入松弛因子)

  1. 调用evaluate_results函数,传入真实标签(y_test)和预测标签(y_pred_slack),输出评价结果。

2.5 实验心得

通过本次支持向量机(SVM)算法实验,我在鸢尾花数据集上进行了分类任务,着重比较了加入松弛因子和未加入松弛因子情况下的分类结果,并深入研究了支持向量机的原理和参数设置。

支持向量机是用于分类和回归任务的强大算法,其核心思想是寻找最优的超平面,将不同类别的样本分隔开。在实验中,我分别训练了一个未加入松弛因子的SVM模型和一个引入了松弛因子的模型。

松弛因子的引入允许一些样本存在于超平面错误的一侧,从而提供一定的容错能力。这种机制使模型更具鲁棒性,能够容忍噪声或异常值的存在。通过设置不同的松弛因子参数,我探讨了模型的容错程度,实验中分别使用了松弛因子参数为0(未加入松弛因子)和101(加入较大松弛因子),并采用默认的学习率和迭代次数(0.0001和2000),对数据进行了归一化处理,确保特征具有相似的尺度,避免了某些特征对模型训练的主导影响。

在训练集和测试集划分方面,我采用了train_test_split函数,将数据集按照70%的训练集和30%的测试集进行划分,以确保模型在训练和测试阶段具有足够的数据支持。

实验结果显示,适度引入松弛因子可以提高模型的鲁棒性,使其更好地适应噪声或异常值。选择合适的松弛因子参数根据数据集的特点和任务要求,较小的参数适用于清晰数据,而较大的参数适用于复杂数据和存在噪声的情况。这次实验使我更深入了解了支持向量机的应用和参数调优。


致读者

风自火出,家人;君子以言有物而行有恒

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146382.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode代码上传到gitlab

打开终端 1.1输入一下内容提交到本地仓库 PS D:\VueProject2\mall-admin-web> git add . PS D:\VueProject2\mall-admin-web> git commit -m “商品优化&#xff0c;屏蔽不要内容” 1.2提交到远程仓库 master应该被替换为 Gitee 仓库中默认的分支名称 PS D:\VueProje…

jenkins 使用原生 git clone 命令,指定ssh密钥文件

使用环境变量 GIT_SSH_COMMAND 从Git版本2.3.0可以使用环境变量GIT_SSH_COMMAND&#xff0c;如下所示&#xff1a; GIT_SSH_COMMAND"ssh -i ~/.ssh/id_rsa_example" git clone example请注意&#xff0c;-i有时可以被您的配置文件覆盖&#xff0c;在这种情况下&…

快速弄懂C++中的智能指针

智能指针是C中的一个对象&#xff0c;它的行为类似于指针&#xff0c;但它提供了自动的内存管理功能。当智能指针超出作用域时&#xff08;比如说在函数中使用智能指针指向了一个对象&#xff0c;当该函数结束时会自动销毁该对象&#xff09;&#xff0c;它会自动删除其所指向的…

合并word中参考文献-(Endnote生成)

合并word中的 两部分的参考文献引用 Merge Citations in the Word document Original&#xff1a; A is a big character [78-80] and B is another one [81-85] Modified&#xff1a; A and B are big characters [78-85] Solutions&#xff1a; Remove the space betwee…

蓝桥杯 第 3 场算法双周赛4,7题

迷宫逃脱 一眼数字三角形模型&#xff0c;因为是要求最大值&#xff0c;而且对转移状态有限制&#xff0c;所以需要注意dp状态的初始化&#xff0c;可以将所有状态赋值为-0x7f&#xff0c;然后将dp[0][1]和dp[1][0]初始化为0&#xff0c;又因为考虑到起始点a[1][1]&#xff0c…

AWD比赛中的一些防护思路技巧

## 思路1&#xff1a; 1、改服务器密码 &#xff08;1&#xff09;linux&#xff1a;passwd &#xff08;2&#xff09;如果是root删除可登录用户&#xff1a;cat /etc/passwd | grep bash userdel -r 用户名 &#xff08;3&#xff09;mysql&#xff1a;update mysql.user set…

前端分页实现

定义每页显示的数据数量&#xff08;例如每页显示10条数据&#xff09;。 根据总数据量和每页显示的数量计算出总页数。 给定当前页码&#xff0c;计算出当前页数据在左侧数据中的起始索引和结束索引。 使用起始索引和结束索引&#xff0c;从左侧数据中截取出当前页的数据。…

ROS服务(Service)通信:通信模型、Hello World与拓展

服务通讯是基于请求响应模式的&#xff0c;是一种应答机制。 用于偶然的、对时时性有要求、有一定逻辑处理需求的数据传输场景。 一、服务通讯模型 服务是一种双向通讯方式&#xff0c;它通过请求和应答的方式传递消息&#xff0c;该模型涉及到三个角色&#xff1a; Master…

vscode中Chinese (Simplified)汉化无效解决方法

问题复现 之前已经下载了 Chinese (Simplified)插件并启用了&#xff0c;都是正常的中文简体。有时候打开vscode的时候&#xff0c;会发现汉化失效了&#xff0c;如图&#xff1a; 解决方法 依次点击 扩展&#xff08;Extensions&#xff09;— Chinese (Simplified) — 选…

独立服务器应该怎么选择?

选择适合你的独立服务器方案是确保在线业务成功的关键步骤。以下是一些你需要考虑的因素&#xff1a; 1. 选择合适的主机商&#xff1a;在选择独立服务器的项目中&#xff0c;我们更注重商家的信誉和品牌&#xff0c;因为一个好的商家必须提供质量保证的产品。 2. 选择服务器…

【案例】可视化大屏

人狠话不多,直接上效果图 这里放的地图自己去实现吧,如果也想实现3D地球话,等笔者那天有心情写篇文章; 说明:script中methods部分代码是没用,可以直接删掉,根据个人情况去写, 内容:笔者也就对页面布局进行了设计,内容的填充就靠个人了 <template><div :sty…

Union(联合体、共用体)

结构体和共用体的区别在于&#xff1a;结构体的各个成员会占用不同的内存&#xff0c;互相之间没有影响&#xff1b;而共用体的所有成员占用同一段内存&#xff0c;修改一个成员会影响其余所有成员。 结构体占用的内存大于等于所有成员占用的内存的总和&#xff08;成员之间可能…

三十分钟学会zookeeper

zookeeper 一、前提知识 集群与分布式 ​ 集群&#xff1a;将一个任务部署在多个服务器&#xff0c;每个服务器都能独立完成该任务。 ​ 分布式&#xff1a;将一个任务拆分成若干个子任务&#xff0c;由若干个服务器分别完成这些子任务&#xff0c;每个服务器只能完成某个特…

Python代码运行速度提升技巧!Python远比你想象中的快~

文章目录 前言一、使用内置函数二、字符串连接 VS join()三、创建列表和字典的方式四、使用 f-Strings五、使用Comprehensions六、附录- Python中的内置函数总结关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项…

Android Studio Error “Unsupported class file major version 61“---异常信息记录

编译时异常信息 原因及解决办法 问题出在JAVA 17上&#xff0c;并且使用的Gradle JDK是&#xff1a;Android Studio java home版本17.0.1将其更改为&#xff1a;Android Studio默认JDK版本11.0.10 即可解决 操作步骤 1 2 3

“Cloud“(云)

"Cloud"&#xff08;云&#xff09;通常指的是云计算&#xff08;cloud computing&#xff09;&#xff0c;是一种通过互联网提供计算服务的模型。云计算允许用户通过网络访问和使用计算资源&#xff0c;而无需拥有或管理实际的硬件和软件基础设施。这种模型提供了一…

pycharm/vscode 配置black和isort

Pycharm blackd Pycharm中有插件可以实现后台服务运行black&#xff1a;BlackConnect 安装 在python中安装blackd 配置 Pycharm isort pycharm中&#xff0c;isort没有插件&#xff0c;暂使用外部工具实现&#xff0c;外部工具也可添加快捷键实现快捷对文件、文件夹进行fo…

代码执行相关函数以及简单例题

代码/命令 执行系列 相关函数 &#xff08;代码注入&#xff09;

【系统架构设计】计算机公共基础知识: 3 计算机网络

目录 一 计算机网络技术概述 二 TCP/IP协议簇 三 网络规划与设计 四 组网技术

Boolean源码解剖学

原创/朱季谦 有天突发其想&#xff0c;想看一下Boolean底层都做了些什么&#xff0c;故而去看了一番Boolean的源码&#xff0c;基于一些思考的基础上&#xff0c;输出了这篇文章。 一.类继承 Boolean的源码类定义部分如下&#xff1a; 1 public final class Boolean implemen…