基于深度学习的活体人脸识别检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1. 活体人脸识别检测算法概述

4.2. 深度学习在活体人脸识别检测中的应用

4.3. 算法流程

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

..........................................................................% 使用训练好的模型进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Training_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);
accuracy
lab1 = [];
for i = 1:length(Dataset.Labels)if Dataset.Labels(i) == '图片或者视频人脸'lab1 = [lab1,1];endif Dataset.Labels(i) == '真人人脸'lab1 = [lab1,2];end
endlab2 = [];
for i = 1:length(Predicted_Label)if Predicted_Label(i) == '图片或者视频人脸'lab2 = [lab2,1];endif Predicted_Label(i) == '真人人脸'lab2 = [lab2,2];end
endfigure;
plot(lab1,'b-s',...'LineWidth',1,...'MarkerSize',8,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(lab2,'r-->',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
title(['识别率',num2str(100*accuracy),'%']);
legend('真实种类','识别种类');
title('1:图片或者视频人脸, 2:真人人脸');% 随机选择16张测试图像进行展示
index = randperm(numel(Resized_Training_Dataset.Files), 20);figure
for i = 1:20% 在子图中展示每张图像、预测标签和概率subplot(5,4,i)I = readimage(Dataset, index(i));% 读取图像imshow(I) % 显示图像label = Predicted_Label(index(i));% 预测标签title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end
83

4.算法理论概述

        基于深度学习的活体人脸识别检测算法是近年来计算机视觉和人工智能领域的研究热点。该算法结合了深度学习技术和人脸识别技术,旨在通过分析和识别面部特征来确定个体的真实身份,并区分真实人脸和伪造人脸。

       活体检测是一些身份验证场景确定对象真实生理特征的方法,在人脸识别应用中,活体检测能基于人脸图片中可能存在的畸变、摩尔纹、反光、倒影、边框等信息的静默活体检测,或通过眨眼、张嘴、摇头、点头等组合动作,使用人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人操作。可有效抵御照片、视频、换脸、面具、遮挡、3D动画以及屏幕翻拍等常见的攻击手段,从而帮助用户甄别欺诈行为,保障用户的利益。

4.1. 活体人脸识别检测算法概述

       活体人脸识别检测算法是一种用于验证个体身份的技术,它通过分析人脸的生物特征来确认个体的真实身份。与传统的身份验证方法(如密码、卡片等)相比,活体人脸识别检测算法具有更高的安全性和便捷性。它可以在不需要接触任何硬件设备的情况下进行身份验证,因此被广泛应用于金融、安全等领域。

4.2. 深度学习在活体人脸识别检测中的应用

        深度学习是一种基于神经网络的机器学习方法,它可以从大量的数据中学习并提取出复杂的特征表示。在活体人脸识别检测中,深度学习技术被用于构建强大的特征提取器,以捕捉人脸的细微特征。

        具体而言,基于深度学习的活体人脸识别检测算法通常采用卷积神经网络(CNN)作为基本模型。CNN由多个卷积层、池化层和全连接层组成,可以有效地提取图像中的局部和全局特征。通过训练大量的活体人脸图像和伪造人脸图像,CNN可以学习到区分真实人脸和伪造人脸的判别性特征。

4.3. 算法流程

基于深度学习的活体人脸识别检测算法通常包括以下流程:

(1) 数据预处理:对输入的人脸图像进行预处理,包括人脸检测、对齐、归一化等操作,以保证输入数据的一致性和稳定性。

(2) 特征提取:利用训练好的Googlenet模型对预处理后的人脸图像进行特征提取。Googlenet模型可以通过前向传播计算得到每个卷积层的特征图,这些特征图描述了图像的不同层次的抽象特征。

(3) 活体检测:在特征提取的基础上,构建一个分类器(如支持向量机、softmax分类器等)对提取的特征进行分类,以判断输入的人脸图像是否为活体人脸。分类器通常通过训练大量的真实人脸和伪造人脸样本来学习分类决策边界。

(4) 决策融合:对于多模态活体人脸识别检测,可以将多个分类器的决策结果进行融合,以提高算法的鲁棒性和准确性。常见的决策融合方法包括投票法、加权融合法等。

       未来,随着深度学习技术的不断发展,活体人脸识别检测算法将进一步提高准确性和鲁棒性。一方面,可以通过引入更复杂的神经网络结构(如残差网络、注意力机制等)来增强特征提取能力;另一方面,可以利用生成对抗网络(GAN)等生成模型来生成高质量的伪造人脸样本,以提高算法的泛化能力。同时,结合多模态生物特征识别(如虹膜、指纹等)也是未来发展的重要方向,可以进一步提高身份验证的安全性和可靠性。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/145974.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分形图案是什么?fpmarkets这样进入市场

分形图案的构造相对简单。市场在某个时间段内,会呈现单向的变动,要么持续上涨,要么持续下跌。观察这种趋势,并预测市场将呈现上涨态势后,过了一段时间,当所有有意向的买家都已经完成购买行为(即在价格上涨过…

EasyPOI实现excel文件导出

EasyPOI真的是一款非常好用的文件导出工具&#xff0c;相较于传统的一行一列的数据导出&#xff0c;这种以实体类绑定生成的方式真的非常方便&#xff0c;也希望大家能够了解、掌握其使用方法&#xff0c;下面就用一个实例来简单介绍一下EasyPOI的使用。 1.导入依赖 <!-- e…

C语言每日一题(31)相交链表

力扣160.相交链表 题目描述 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意…

新手老师怎么发布班级查询?

现在科技发展飞快&#xff0c;班级查询系统已经成为了许多学校必备的教务工具。可以让学生们快速查找到班级的各项信息&#xff0c;包括但不限于课程安排、考试成绩、分班等。对老师来说&#xff0c;班级查询系统可以提高工作效率&#xff0c;减少重复劳动&#xff0c;学生或者…

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蝠鲼觅食优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

ubuntu中cuda12.1配置(之前存在11.1版本的cuda)(同时配置两个版本)

ubuntu中cuda12.1配置 由于YOLOv8项目中Pytorch版本需要cuda12.1版本 在官网下载12.1版本的deb包 官网地址 sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda然后需要修改bashrc文件&#xff08;隐藏文件&#xff09; 添加 exp…

关系代数、SQL语句和Go语言示例

近些年&#xff0c;数据库领域发展日新月异&#xff0c;除传统的关系型数据库外&#xff0c;还出现了许多新型的数据库&#xff0c;比如&#xff1a;以HBase、Cassandra、MongoDB为代表的NoSQL数据库&#xff0c;以InfluxDB、TDEngine为代表的时序数据[1]库&#xff0c;以Neo4J…

jQuery UI简单的讲解

我们先进入一下问答时间&#xff0c;你都知道多少呢&#xff1f; &#xff08;1&#xff09;什么是jQuery UI 呢&#xff1f; 解答&#xff1a;jQuery UI 是以 jQuery 为基础的开源 JavaScript 网页用户界面代码库。包含底层用户交互、动画、特效和可更换主题的可视控件。我们…

无需公众号实现微信JSSDK分享卡片!Safari浏览器分享到微信自动成卡片!

摘要 要在微信分享卡片&#xff0c;需要接入微信自家的JSSDK&#xff0c;比较麻烦&#xff0c;还需要认证公众号&#xff0c;但是如果你没有这样的条件&#xff0c;那么你也可以试试使用iOS的Safari浏览器轻松实现&#xff0c;只需要在html中加入3个meta即可。 代码 <!DO…

初始MySQL(七)(MySQL表类型和存储引擎,MySQL视图,MySQL用户管理)

目录 MySQL表类型和存储引擎 MyISAM MEMORY MySQL视图 我们先说说视图的是啥? 视图的一些使用细节 MySQL用户管理 原因 常见操作 MySQL表类型和存储引擎 -- 查看所有的存储引擎 SHOW ENGINES 我们常见的表有MyISAM InnoDB MEMORY 1.MyISAM不支持事务,也不支持外…

pytorch 安装 2023年

pytorch网址&#xff1a;https://pytorch.org/get-started/locally/ conda install pytorch torchvision torchaudio pytorch-cuda11.8 -c pytorch -c nvidia我在自己电脑上用这个pip命令完全安装不了&#xff0c;只能用conda安装。复制上面提供的命令&#xff0c;在cmd中直接运…

VIM去掉utf-8 bom头

Windows系统的txt文件在使用utf-8编码保存时会默认在文件开头插入三个不可见的字符&#xff08;0xEF 0xBB 0xBF&#xff09;称为BOM头 BOM头文件 0.加上BOM标记&#xff1a; :set bomb 1.查询当前UTF-8编码的文件是否有BOM标记&#xff1a; :set bomb? :set bomb? 2.BOM头:文…

使用Python的requests库模拟爬取地图商铺信息

目录 引言 一、了解目标网站 二、安装requests库 三、发送GET请求 四、解析响应内容 五、处理异常和数据清洗 六、数据存储和分析 七、数据分析和可视化 八、注意事项和最佳实践 总结 引言 随着互联网的快速发展&#xff0c;网络爬虫技术已经成为获取数据的重要手段…

交换排序详讲:冒泡排序+快速排序(多方法+思路+图解+代码)

文章目录 交换排序一.冒泡排序二.快速排序1.挖坑法2.Hoare法 交换排序 根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置将键值较大的记录向序列的尾部移动&#xff0c;键值较小的记录向序列的前部移动。 一.冒泡排序 /*** 冒泡排序* 时间复杂度 n^2* 空间复杂…

常见面试题-HashMap源码

了解 HashMap 源码吗&#xff1f; 参考文章&#xff1a;https://juejin.cn/post/6844903682664824845 https://blog.51cto.com/u_15344989/3655921 以下均为 jdk1.8 的 HashMap 讲解 首先&#xff0c;HashMap 的底层结构了解吗&#xff1f; 底层结构为&#xff1a;数组 链…

redis常见问题及解决方案

缓存预热 定义 缓存预热是一种优化方案&#xff0c;它可以提高用户的使用体验。 缓存预热是指在系统启动的时候&#xff0c;先把查询结果预存到缓存中&#xff0c;以便用户后面查询时可以直接从缓存中读取&#xff0c;节省用户等待时间 实现思路 把需要缓存的方法写在初始化方…

【MySQL】聚合函数:汇总、分组数据

文章目录 学习目标MAX()、MIN()、AVG()、SUM()、COUNT()COUNT(*) 得到所有记录条目DISTINCT去重练习1&#xff08;使用UNION &#xff0c; SUM&#xff0c; BETEEN AND&#xff09;GROUP BY子句练习2&#xff08;使用sum&#xff0c;group by&#xff0c; join on&#xff0c; …

S25FL256S介绍及FPGA实现思路

本文介绍 S25FL256S 这款 FLASH 芯片&#xff0c;并进行 FPGA 读写控制的实现&#xff08;编程思路及注意事项&#xff09;。 文章目录 S25FL-S 介绍管脚功能说明SPI 时钟模式SDRDDR 工作模式FLASH存储阵列&#xff08;地址空间映射&#xff09;常用寄存器及相关指令Status Reg…

Stable Diffusion WebUI使用AnimateDiff插件生成动画

AnimateDiff 可以针对各个模型生成的图片&#xff0c;一键生成对应的动图。 配置要求 GPU显存建议12G以上&#xff0c;在xformers或者sdp优化下显存要求至少6G以上。 要开启sdp优化&#xff0c;在启动参数加上--sdp-no-mem-attention 实际的显存使用量取决于图像大小&#…

毫米波雷达模块的目标检测与跟踪

毫米波雷达技术在目标检测与跟踪方面具有独特的优势&#xff0c;其高精度、不受光照影响等特点使其在汽车、军事、工业等领域广泛应用。本文深入探讨毫米波雷达模块在目标检测与跟踪方面的研究现状、关键技术以及未来发展方向。 随着科技的不断进步&#xff0c;毫米波雷达技术在…