【图像处理】:Otsu算法最大类间方差法(大津算法:附源码)

这里写自定义目录标题

  • 数学原理
  • 算法评价
  • 参考链接

数学原理

以灰度图像为例,对于图像M×N大小的矩阵,即图像中的像素,每一个值即为像素值,其中灰度图像像素值在(0~255)之间。
主要实现前景(即目标)和背景的分割:
主要公式:
前景的像素点数占整幅图像的比例记为ω0,前景平均灰度记为μ0
​背景像素点数占整幅图像的比例记为ω1,其平均灰度记为μ1
​图像的总平均灰度记为μ,类间方差记为maximum。
假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值optimal threshold的像素个数记作N0
,像素灰度大于等于阈值optimalthreshold 的像素个数记作N1,
则有:
            ω0 = N0 / ( M × N )             (1)   
            ω1 = N1 / ( M × N )             (2)       
        N0 + N1 = M × N             (3)   
            1 = ω 0 + ω 1             (4)      
            μ = ω0 × μ0 + ω1 × μ1         (5)   
       maximum = ω0 × ( μ0 − μ ) 2 + ω1 × ( μ1 − μ ) 2 (6)  
将式(5)代入式(6),得到等价公式(7):
      maximum = ω0 × ω1 × (μ0 − μ1 ) 2 (7)    
采用遍历的方法得到使类间方差maximum最大的阈值optimal threshold
实现过程:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:longc
# datetime:2023/11/16 10:30
# software: PyCharm
# function: 图像处理逻辑import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image# otsu算法
def otsu(gray):pixel_number = gray.shape[0] * gray.shape[1]mean_weigth = 1.0 / pixel_number# #统计各灰度级的像素个数,灰度级分为256级# bins必须写到257,否则255这个值只能分到[254,255)区间his, bins = np.histogram(gray, np.arange(0, 257))  # 计算灰度的直方图,计数统计区间为0-257print("bins", bins)print("his", his)# 绘制直方图plt.figure(figsize=(12, 8))# plt.hist(gray, 256, [0, 256], label='灰度级直方图')  # 运行比较慢,如果电脑卡顿,可以将本行代码注释掉plt.show()final_thresh = -1final_value = -1intensity_arr = np.arange(256)  # 灰度分为256级,0级到255级# ************************************************************ 采用遍历的方法得到类间方差最大的阈值for t in bins[1:-1]:  # 遍历1到254级 (一定不能有超出范围的值)pcb = np.sum(his[:t])  # 小于当前灰度对应的所有像素点计数pcf = np.sum(his[t:])  # 大于当前灰度对应的所有像素点计数Wb = pcb * mean_weigth  # 像素被分类为背景的概率Wf = pcf * mean_weigth  # 像素被分类为目标的概率# if t == 100:#     print("1>>>", intensity_arr[:t])#     print("2>>>", his[:t])#     print("3>>>", np.sum(intensity_arr[:t] * his[:t]))#     print("4>>>", float(pcb))#     print("5>>>", np.sum(intensity_arr[:t] * his[:t]) / float(pcb))mub = np.sum(intensity_arr[:t] * his[:t]) / float(pcb)  # 分类为背景的像素均值muf = np.sum(intensity_arr[t:] * his[t:]) / float(pcf)  # 分类为目标的像素均值# print mub, mufvalue = Wb * Wf * (mub - muf) ** 2  # 计算目标和背景类间方差# 采用遍历的方法得到使类间方差value最大的阈值final_value和二值化对应最大的final_threshif value > final_value:final_thresh = t  # 进行二值化的操作值final_value = valueprint("final_thresh>>>", final_thresh)print("final_value>>>", final_value)# 二值化操作处理# final_img = gray.copy()# print(final_thresh)# final_img[gray > final_thresh] = 255# final_img[gray < final_thresh] = 0# cv2.imwrite("final_img.jpg", final_img)plt.imshow(gray)plt.show()# 二值化图像(多种方法对比)ret, binary_image = cv2.threshold(gray, final_thresh-15, 255, cv2.THRESH_BINARY)plt.imshow(binary_image, cmap='gray')plt.show()# ret, binary_image1 = cv2.threshold(gray, final_thresh, 255, cv2.THRESH_TRUNC)# plt.imshow(binary_image1)# plt.show()## ret, binary_image2 = cv2.threshold(gray, final_thresh, 255, cv2.THRESH_TOZERO)# plt.imshow(binary_image2)# plt.show()## ret, binary_image3 = cv2.threshold(gray, final_thresh, 255, cv2.THRESH_TOZERO_INV)# plt.imshow(binary_image3)# plt.show()imggray = cv2.imread("IMG_0004_3.jpg", 0)
plt.title("imggray")
plt.imshow(imggray, cmap='gray')
plt.show()# 进行OSTU运算
otsu(imggray)

算法评价

优点:算法简单,当目标与背景的面积相差不大时,能够有效地对图像进行分割。

缺点:类间方差法对噪声以及目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果。当目标与背景的大小比例悬殊时(例如受光照不均、反光或背景复杂等因素影响),类间方差准则函数可能呈现双峰或多峰,或者目标与背景的灰度有较大的重叠时,效果不不是很理想。

原因:该方法忽略了图像的空间信息,同时将图像的灰度分布作为分割图像的依据,对噪声也相当敏感

原文链接:

参考链接

数字图像处理——最大类间方差法(OTSU)图像阈值分割实例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/145023.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在原生HTML页面发起axios请求

在原生html页面发起axios请求&#xff0c;首先需要先引入axios文件包&#xff0c;然后按照axios的请求方式发起请求即可&#xff0c;但如果页面在本地&#xff0c;那么请求一般会报错跨域问题&#xff0c;需要部署一下才能正确请求数据&#xff1b; 例子 <!DOCTYPE html&g…

C语言编程陷阱(三)

陷阱11:不要使用==运算符来比较两个字符串是否相等 字符串是C语言中常用的数据类型之一,它是由一系列字符组成的数组,以空字符\0结尾。有时候,我们需要比较两个字符串是否相等,比如在验证用户输入,或者在查找匹配的数据,或者在排序字符串等,就需要使用==运算符或strcmp…

<MySQL> 什么是数据库索引?数据库索引的底层结构是什么?

目录 一、什么是数据库索引? 1.1 索引的概念 1.2 索引的特点 1.3 索引的适用场景 1.4 索引的使用 1.4.1 创建索引 1.4.2 查看索引 1.4.3 删除索引 二、数据库索引的底层结构是什么&#xff1f; 2.1 数据库中的 B树 长啥样&#xff1f; 2.2 B树为什么适合做数据库索…

【漏洞复现】OneThink前台注入漏洞

漏洞描述 OneThink 是一个基于 PHP 的开源内容管理框架&#xff0c;旨在简化和加速Web应用程序的开发过程。它提供了一系列通用的模块和功能&#xff0c;使开发者能够更轻松地构建具有灵活性和可扩展性的内容管理系统&#xff08;CMS&#xff09;和其他Web应用。 免责声明 …

Meta降本增效大招之:弃用产品

今晚无意间进入去哪儿技术沙龙的直播间&#xff0c;听到他们要删除50%的代码和停掉50%的服务。我就想起Meta公司最近写的这篇博客&#xff1a;Automating product deprecation。 这篇博客对于效能平台的建设非常具有指导意义。文章最后有原文链接和我个人的总结。 这是一个系列…

扩散模型实战(九):使用CLIP模型引导和控制扩散模型

推荐阅读列表&#xff1a; 扩散模型实战&#xff08;一&#xff09;&#xff1a;基本原理介绍 扩散模型实战&#xff08;二&#xff09;&#xff1a;扩散模型的发展 扩散模型实战&#xff08;三&#xff09;&#xff1a;扩散模型的应用 扩散模型实战&#xff08;四&#xff…

SQL基础理论篇(三):数据表的创建原则

文章目录 简介数据表的常见约束设计数据表的原则参考文献 简介 DDL中常用的功能是增删改&#xff0c;分别对应的命令是create、drop和alter。 执行DDL的时候&#xff0c;不需要commit&#xff0c;就可以完成执行任务。 下面是MySQL里的一个典型的表创建语句&#xff1a; DR…

接口自动化测试面试题

前言 前面总结了一篇关于接口测试的常规面试题&#xff0c;现在接口自动化测试用的比较多&#xff0c;也是被很多公司看好。那么想做接口自动化测试需要具备哪些能力呢&#xff1f; 也就是面试的过程中&#xff0c;面试官会考哪些问题&#xff0c;知道你是不是真的做过接口自动…

京东数据挖掘(京东运营数据分析):2023年宠物行业数据分析报告

随着社会经济的发展&#xff0c;人均收入水平逐渐提高&#xff0c;使得宠物成为越来越多家庭的成员&#xff0c;宠物数量不断增长。伴随养宠人群的增多&#xff0c;宠物相关产业的发展也不断升温&#xff0c;宠物经济规模持续增长。 根据鲸参谋平台的数据显示&#xff0c;在宠物…

传统游戏难产 育碧瞄向Web3

出品过《刺客信条》的游戏大厂育碧&#xff08;Ubisoft&#xff09;又在Web3游戏领域有了新动作。 首次试水NFT无功而返后&#xff0c;育碧&#xff08;Ubisoft&#xff09;战略创新实验室与Web3游戏网络Immutable达成合作&#xff0c;将利用Immutable 开发游戏的经验和及生态…

C++ 基础二

文章目录 四、流程控制语句4.1 选择结构4.1.1 if语句 4.1.2 三目运算符4.1.3 switch语句注意事项 4.1.4 if和switch的区别【CHAT】4.2 循环结构4.2.1 while循环语句4.2.2 do...while循环语句 4.2.3 for循环语句九九乘法表 4.3 跳转语句4.3.1 break语句4.3.2 continue语句4.3.3 …

python趣味编程-5分钟实现一个测验应用程序(含源码、步骤讲解)

Python测验是用 Python 编程语言编写的,这个关于 Python 编程的简单测验是一个简单的项目,用于测试一个人在给定主题考试中的知识能力。 Python 中的 Quiz项目仅包含用户端。用户必须先登录或注册才能开始Python 测验。 此外,还规定了解决问题的时间。用户应在时间结束前解…

如何查看当前开发的Android版本

Android的版本查看在build/make/core/version_defaults.mk中 搜索PLATFORM_VERSION&#xff0c;会出现一堆结果&#xff0c;找到 DEFAULT_PLATFORM_VERSION : QP1A PLATFORM_VERSION.QP1A : 10 这里就是表示是 Android 10 Android 10的代号是 Q&#xff0c; 因此QP1A第一…

Leetcode -1

Leetcode Leetcode -94.二叉树的中序遍历Leetcode -145.二叉树的后序遍历 Leetcode -94.二叉树的中序遍历 题目&#xff1a;给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1, null, 2, 3] 输出&#xff1a;[1,…

计算机网络:网络层ARP协议

在实现IP通信时使用了两个地址&#xff1a;IP地址&#xff08;网络层地址&#xff09;和MAC地址&#xff08;数据链路层地址&#xff09; 问题&#xff1a;已知一个机器&#xff08;主机或路由器&#xff09;的IP地址&#xff0c;如何找到相应的MAC地址&#xff1f; 为了解决…

力扣刷题篇之数与位3

系列文章目录 目录 系列文章目录 前言 数学问题 总结 前言 本系列是个人力扣刷题汇总&#xff0c;本文是数与位。刷题顺序按照[力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 - 力扣&#xff08;LeetCode&#xff09; 数学问题 204. 计数质数 - 力扣&#xff08;Le…

C# chatGPT API调用示例

# C# API现在需要Verify your phone number to create an API key using Newtonsoft.Json; using System.Text;class Program {static readonly HttpClient client new HttpClient();static async Task Main(){try{// 设置 API 密钥string apiKey "your api";clie…

Elasticsearch 8.9 Bulk批量给索引增加数据源码

一、相关API的handler二、RestBulkAction&#xff0c;组装bulkRequest调用TransportBulkAction三、TransportBulkAction 会把数据分发到数据该到的数据节点1、把数据按分片分组&#xff0c;按分片分组数据再发送到指定的数据节点(1) 计算此文档发往哪个分片1)根据索引是否是分区…

【Linux】vscode远程连接ubuntu失败

VSCode远程连接ubuntu服务器 这部分网上有很多&#xff0c;都烂大街了&#xff0c;自己搜吧。给个参考连接&#xff1a;VSCode远程连接ubuntu服务器 注意&#xff0c;这里我提前设置了免密登录。至于怎么设置远程免密登录&#xff0c;可以看其它帖子&#xff0c;比如这个。 …

leetcode刷题日志-13整数转罗马数字

罗马数字包含以下七种字符&#xff1a; I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#xff0c; 罗马数字 2 写做 II &#xff0c;即为两个并列的 1。12 写做 XII &#xff0c;即为…