场景图形管理-多视图与相机(3)

        在OSG中多视图的管理是通过osgViewer::CompositeViewer类来实现的。该类负责多个视图的管理及同步工作,继承自osgViewer;:ViewerBase类,继承关系图如图8-13所示

图8-13 osgViewer::CompositeViewer 的继承关系图

        在前面已经讲到,osgViewer:ViewerBase 类主要负责线程管理设置线程模式启动线程等工作在多视图渲染时,线程管理一直都是一个令人非常头痛的问题,但这些底层工作在 osgViewer::CompositeViewer类中已经实现了。如果读者想了解得更详细,可参看osgViewer/CompositeViewer.cpp源代码。

        对于osgViewer::CompositeViewer,它内部已经包含了多个视图(osg::View),使用它来表示一个视图当然是可以的,此时osgViewer:CompositeViewer 的作用与标准的osgViewer::Viewer 对象并无太大差别,但是比起每次只管理一个视图的情形来说,管理和使用多个视图还是显得略微麻烦。因此,建议在只有一个视图时尽量选择使用 osgViewer::Viewer。当然,有时可能需要用到不止一个视图,也可能在多个视口内显示同一视图的内容(如多数 CAD 软件),或同时显示一个3D场景和一幅小地图视图,或读取多个模型文件并分别独立地进行控制。对于这些程序来说,往往需要在一个或多个场景(osgVicwer:Scene)上管理多个视图(osgView)此时程序的管理方式要比单独的osgViewer.:Viewer情形下复杂得多。事实上,程序的细节程度总是与问题的复杂程度成比例的,因此,我们有必要在正确的条件下选择正确的实现方式。

        在osgViewer:CompositeViewer中添加视图或移除视图可以用下面的成员函数:

void addView(osgViewer.:View*view)//添加一个视图
void removeView(osgViewer::View*view)//移除一个视图
osgViewer::View *getView(unsigned i) //得到视图的索引
const  osgViewer::View *getView(unsigned i)const//得到视图的索引
unsigned int getNumViews() const//得到视图的个数

        在论坛上,有很多人会提问如何来做一个“鹰眼”,其实,这是比较简单的实现。用osgViewer.:CompositeViewer类实现多视图管理,让一个小地图HUD显示一个视图,另一个视图染主窗口即可。本书并没有专门提供一个相关的例子,读者可以通过修改本书的例子来自行完成

  1. 多视图相机渲染示例

        多视图相机渲染示例的代码如程序清单8-5所示

// 多视图相机渲染示例
void compositeViewer_8_5(const string &strDataFolder)
{// 创建CompositeViewer对象osg::ref_ptr<osgViewer::CompositeViewer> viewer = new osgViewer::CompositeViewer();// 获取牛的模型string strDataPath = strDataFolder + "cow.osg";osg::ref_ptr<osg::Node> cow = osgDB::readNodeFile(strDataPath);// 读取飞机模型strDataPath = strDataFolder + "cessna.osg";osg::ref_ptr<osg::Node> cessna = osgDB::readNodeFile(strDataPath);// 优化场景数据osgUtil::Optimizer optimizer;optimizer.optimize(cow.get());optimizer.optimize(cessna.get());// 设置图形环境特性osg::ref_ptr<osg::GraphicsContext::Traits> traits = new osg::GraphicsContext::Traits();traits->x = 100;traits->y = 100;traits->width = 900;traits->height = 700;traits->windowDecoration = true;traits->doubleBuffer = true;traits->sharedContext = 0;// 创建图形环境特性osg::ref_ptr<osg::GraphicsContext> gc = osg::GraphicsContext::createGraphicsContext(traits.get());if (gc->valid()){osg::notify(osg::INFO) << " GraphicsWIndow has been created successfully." << endl;// 清除窗口颜色及颜色和深度缓冲gc->setClearColor(osg::Vec4f(0.2f, 0.2f, 0.6f, 1.0f));gc->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);}else{osg::notify(osg::NOTICE) << " GrraphicsWidnow has not been created successfully." << endl;}//视图1{// 创建视图1osg::ref_ptr<osgViewer::View> view = new osgViewer::View;viewer->addView(view.get());// 设置视图场景数据view->setSceneData(cow.get());// 设置相机视口及图形环境view->getCamera()->setViewport(new osg::Viewport(0, 0, traits->width / 2, traits->height / 2));view->getCamera()->setGraphicsContext(gc.get());// 设置操作器view->setCameraManipulator(new osgGA::TrackballManipulator);// 添加事件处理view->addEventHandler(new osgViewer::StatsHandler);view->addEventHandler(new osgViewer::WindowSizeHandler);view->addEventHandler(new osgViewer::ThreadingHandler);view->addEventHandler(new osgViewer::RecordCameraPathHandler);}// 视图2{osg::ref_ptr<osgViewer::View> view = new osgViewer::Viewer;viewer->addView(view.get());view->setSceneData(cessna.get());view->getCamera()->setViewport(new osg::Viewport(traits->width / 2, 0, traits->width / 2, traits->height / 2));view->getCamera()->setGraphicsContext(gc.get());view->setCameraManipulator(new osgGA::TrackballManipulator);}// 视图3{osg::ref_ptr<osgViewer::View> view = new osgViewer::View;viewer->addView(view.get());view->setSceneData(cessna.get());// 根据分辨率确定合适的投影来保证显示的图形不变形double fovy, aspectRatio, zNear, zFar;view->getCamera()->getProjectionMatrixAsPerspective(fovy, aspectRatio, zNear, zFar);double newAspectRatio = double(traits->width) / double(traits->height/2);double aspectRaitoChange = newAspectRatio / aspectRatio;if (aspectRaitoChange != 1.0){view->getCamera()->getProjectionMatrix() *= osg::Matrix::scale(1.0 / aspectRaitoChange, 1.0, 1.0);}view->getCamera()->setViewport(new osg::Viewport(0, traits->height / 2, traits->width, traits->height / 2));view->getCamera()->setGraphicsContext(gc.get());view->setCameraManipulator(new osgGA::TrackballManipulator);}viewer->realize();viewer->run();
}

        运行程序,截图如图8-14所示

图8-14多视图相机渲染示例截图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/144659.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Win通过WSL配置安装Redis

一共分为如下几步&#xff1a; 安装WSL发行版&#xff0c;如Ubuntu安装Redis配置Redis与WSL WSL安装 这里有微软官方的文档&#xff1a;https://learn.microsoft.com/zh-cn/windows/wsl/install 但我不建议零基础的这么做。很容易输完一些命令之后&#xff0c;把环境弄得乱七…

私域电商:实体商家想通过异业联盟引流,应该怎么做?

​异业联盟引流是一种有效的营销策略&#xff0c;通过与不同行业的企业或品牌合作&#xff0c;共同推广产品或服务&#xff0c;扩大品牌影响力和用户群体。以下是异业联盟引流的一些详细过程&#xff1a; ​选择合作联盟&#xff1a; 首先&#xff0c;需要选择与自己企业或品…

Mybatis-Plus最新教程

目录 原理&#xff1a;MybatisPlus通过扫描实体类&#xff0c;并基于反射获取实体类信息作为数据库信息。 ​编辑1.添加依赖 2.常用注解 3.常见配置&#xff1a; 4.条件构造器 5.QueryWrapper 6.UpdateWrapper 7.LambdaQueryWrapper:避免硬编码 8.自定义SQL 9.Iservic…

【kafka】windows安装启动

1.zookeeper的安装与启动 快速打开window powershell&#xff1a; windowx&#xff0c;选 2.kafka下载 —注意kafka和zookeeper需要版本匹配 安装路径 注意&#xff0c;kafka安装目录不能有空格。文件下载到&#xff1a; D:\Program_Files\kafka_2.12-3.6.0新建logs文件 修改c…

nginx服务器

nginx反向代理 nginx 反向代理的好处&#xff1a; 提高访问速度 因为nginx本身可以进行缓存&#xff0c;如果访问的同一接口&#xff0c;并且做了数据缓存&#xff0c; nginx就直接可把数据返回&#xff0c;不需要真正地访问服务端&#xff0c;从而提高访问速度。 进行负载均衡…

FISCOBCOS入门(十)Truffle自定义测试helloworld

在windos终端内安装truffle npm install -g truffle truffle --version 出现上图情况也没问题 下面就可以进行我们的操作了 创建一个文件truffle 创建一个空工程 truffle init 在contracts内加入HelloWorld合约 // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; c…

桂院校园导航 | 云上高校导航 云开发项目 二次开发教程 1.3

Gitee代码仓库&#xff1a;桂院校园导航小程序 GitHub代码仓库&#xff1a;GLU-Campus-Guide 演示视频 中国大学生计算机设计大赛-移动应用与开发-云上高校导航 升级日志 1.3 优化了小程序的数据存储方式&#xff0c;对部分页面进行了调整&#xff0c;调整了功能和代码。 引…

深度学习之基于Pytorch和OCR的识别文本检测系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介深度学习与OCRPyTorch在OCR中的应用文本检测系统的关键组成部分1. 图像预处理2. 深度学习模型3. 文本检测算法4. 后处理 二、功能三、系统四. 总结 一项目简…

对象存储OSS服务器邀请试用

文章目录 试用产品领取产品试用权限上传文件开启加速传输提交作品小程序提交任务获取奖励 试用产品 先下载要上传的资源 电脑浏览器打开此页面开始试用&#xff0c;页面如下图 未登录的先登录 领取产品试用权限 在该页面中点击立即试用&#xff0c;弹框勾选服务协议并领取试…

MIB 6.1810操作系统实验:准备工作(Tools Used in 6.1810)

6.1810 / Fall 2023 实验环境&#xff1a; Ubuntuxv6实验必要的依赖环境能通过make qemu进入系统 $ sudo apt-get update && sudo apt-get upgrade $ sudo apt-get install git build-essential gdb-multiarch qemu-system-misc gcc-riscv64-linux-gnu binutils-ri…

Netty - 回顾Netty高性能原理和框架架构解析

文章目录 概述JDK 原生 NIO 程序的问题Why Netty使用场景Related ProjectsNetty 高性能设计I/O 模型【阻塞 I/O】&#xff1a;【I/O 复用模型】【基于 Buffer】 线程模型事件驱动模型Reactor 线程模型Netty的线程模型异步处理 Netty框架的架构设计功能特性模块组件Bootstrap、S…

jbase实现通用码表

没有通用码表的体系是不完美的&#xff0c;当年我用C#能实现的通用码表&#xff0c;现在在java一样的实现了&#xff0c;通用码表对提高开发效率和降低开发成本的作用巨大&#xff0c;开发可以专注写业务&#xff0c;而不必被太多的维护界面束缚。进而体现在产品竞争力上面&…

大模型在数据分析场景下的能力评测|进阶篇

做数据分析&#xff0c;什么大模型比较合适&#xff1f; 如何调优大模型&#xff0c;来更好地做数据计算和洞察分析&#xff1f; 如何降低整体成本&#xff0c;同时保障分析体验&#xff1f;10月25日&#xff0c;我们发布了数据分析场景下的大模型能力评测框架&#xff08;点击…

【T690 之十一】基于方寸EVB2开发板,结合 Eclipse+gdb+gdbserver 调试 CCAT 的流程总结

目录 1. 准备工作1.1 Eclipse1.2 工程编译1.3 烧写固件 2. 创建工程2.1 搭建调试工程2.2 配置Dbug调试信息 3. 调试4. 手动调试过程4. 总结 备注&#xff1a; 1&#xff0c;假设您已对方寸微电子的T690系列芯片的使用方式都有了一定的了解&#xff0c;可以根据此文的配置进行Li…

OpenAI暂停新的ChatGPT Plus注册 | OpenAI 的 GPT Builder 创建您的 GPTs

OpenAI DevDay 才过去仅仅一周时间&#xff0c;伴随着开发者大会上发布的一系列重磅升级和新特性&#xff0c;无疑这样的进化速度让广大网友炸锅了&#xff0c;其火热程度可见一斑。 就在四个小时前&#xff0c;OpenAI的CEO Sam Altma突然宣布&#xff0c;ChatGPT Plus账号暂停…

桂院校园导航 静态项目 二次开发教程 1.3

Gitee代码仓库&#xff1a;桂院校园导航小程序 GitHub代码仓库&#xff1a;GLU-Campus-Guide 升级日志 1.3 优化了小程序的数据存储方式&#xff0c;对部分页面进行了调整&#xff0c;调整了功能和代码。 引入weui组件库&#xff0c;使地点的呈现方式更加美观 序号内容详情…

leetcode - 串联所有单词的子串 - 最小覆盖子串 - x 的平方根

I30. 串联所有单词的子串 - 力扣&#xff08;LeetCode&#xff09; 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。 例如&#xff0c;如果 words ["ab&qu…

通过Python设置及读取PDF属性,轻松管理PDF文档

PDF文档属性是嵌入在PDF文档中的一些与文档有关的信息&#xff0c;如作者、制作软件、标题、主题等。PDF属性分为默认属性和自定义属性两种&#xff0c;其中默认属性是一些固定的文档信息&#xff0c;部分信息自动生成&#xff08;如文件大小、页数、页面大小等信息&#xff09…

基于Qt 多线程(继承 QObject 的线程)

​ 继承 QThread 类是创建线程的一种方法,另一种就是继承QObject 类。继承 QObject 类更加灵活。它通过 QObject::moveToThread()方法,将一个 QObeject的类转移到一个线程里执行。恩,不理解的话,我们下面也画个图捋一下。 通过上面的图不难理解,首先我们写一个类继承 QObj…

单脉冲测角-和差比幅法

和差比幅法单脉冲测角 单脉冲测角的类型阵列接收模型和差波束构造方法和差比幅测角仿真 单脉冲测角的类型 传统的单脉冲测向方法主要有3种&#xff0c;分别是半阵法、加权法和和差比幅法。其实这3种方法都需要形成和波束和差波束&#xff0c;只是波束形成的方法不同&#xff0…