Datawhale智能汽车AI挑战赛

1.赛题解析

赛题地址:https://tianchi.aliyun.com/competition/entrance/532155
任务:

  • 输入:元宇宙仿真平台生成的前视摄像头虚拟视频数据(8-10秒左右);
  • 输出:对视频中的信息进行综合理解,以指定的json文件格式,按照数据说明中的关键词(key)填充描述型的文本信息(value,中文/英文均可以)

评分标准:
系统会针对参赛者提交的json文件,通过描述型的文本信息与真值进行对比,综合得出分数;其中,“距离最近的交通参与者的行为”的题目为2分,其它题目为1分;每个视频的满分为10分。每一个视频结果中的key值,需要参考数据说明的json格式示例,请勿进行修改。

2.Baseline详解

深度学习框架搭建:
可参考
Paddle版:
首先导入库

import paddle
from PIL import Image
from clip import tokenize, load_model
import glob, json, os
import cv2
from PIL import Image
from tqdm import tqdm_notebook
import numpy as np
from sklearn.preprocessing import normalize
import matplotlib.pyplot as plt

paddle:PaddlePaddle深度学习框架。
PIL:Python Imaging Library,用于图像处理。
clip:包含CLIP模型的库。
glob:用于获取文件路径。
json:用于处理JSON数据。
os:用于操作文件和目录。
cv2:OpenCV库,用于读取视频帧。
tqdm_notebook:用于显示进度条。
numpy:用于数值计算。
sklearn.preprocessing.normalize:用于归一化数据。
matplotlib.pyplot:用于绘图。

加载CLIP模型和转换器:

model, transforms = load_model('ViT_B_32', pretrained=True)

定义匹配词典:

en_match_words = {"scerario" : ["suburbs","city street","expressway","tunnel","parking-lot","gas or charging stations","unknown"],"weather" : ["clear","cloudy","raining","foggy","snowy","unknown"],"period" : ["daytime","dawn or dusk","night","unknown"],"road_structure" : ["normal","crossroads","T-junction","ramp","lane merging","parking lot entrance","round about","unknown"],"general_obstacle" : ["nothing","speed bumper","traffic cone","water horse","stone","manhole cover","nothing","unknown"],"abnormal_condition" : ["uneven","oil or water stain","standing water","cracked","nothing","unknown"],"ego_car_behavior" : ["slow down","go straight","turn right","turn left","stop","U-turn","speed up","lane change","others"],"closest_participants_type" : ["passenger car","bus","truck","pedestrain","policeman","nothing","others","unknown"],"closest_participants_behavior" : ["slow down","go straight","turn right","turn left","stop","U-turn","speed up","lane change","others"],
}

定义结果JSON对象

submit_json = {"author" : "abc" ,"time" : "231011","model" : "model_name","test_results" : []
}

获取视频文件路径并排序:

paths = glob.glob('./初赛测试视频/*')
paths.sort()

遍历每个视频文件:

for video_path in paths:print(video_path)

读取视频帧并进行预处理

cap = cv2.VideoCapture(video_path)
img = cap.read()[1]
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
image = transforms(image).unsqueeze(0)

定义单个视频结果的字典,并设置默认值:

single_video_result = {"clip_id": clip_id,"scerario" : "cityroad","weather":"unknown","period":"night","road_structure":"ramp","general_obstacle":"nothing","abnormal_condition":"nothing","ego_car_behavior":"turning right","closest_participants_type":"passenger car","closest_participants_behavior":"braking"
}

对于每个关键词,使用CLIP模型进行分类:

for keyword in en_match_words.keys():if keyword not in ["weather", "road_structure"]:#只有当关键词为"weather"或"road_structure"时才会执行后续的操作,其他关键词则会跳过continuetexts = np.array(en_match_words[keyword])#先将关键词对应的文本转换为一个NumPy数组
#先使用了一个名为tokenize的函数,它将关键词转换为模型能够理解的标记序列,然后调用CLIP模型的model方法,传入图像和标记化的文本,获取图像和文本的logits(预测得分)。其中,logits_per_image表示图像的logits,logits_per_text表示文本的logitswith paddle.no_grad():logits_per_image, logits_per_text = model(image, tokenize(en_match_words[keyword]))probs = paddle.nn.functional.softmax(logits_per_image, axis=-1)#使用softmax函数对图像的logits进行归一化处理,得到每个类别的概率probs = probs.numpy()        single_video_result[keyword] = texts[probs[0].argsort()[::-1][0]]#将概率值转换为NumPy数组,并根据概率值从高到低进行排序。然后将对应的文本赋值给single_video_result字典中的相应关键词

将单个视频结果添加到结果JSON对象中:

submit_json["test_results"].append(single_video_result)

将结果JSON对象保存为文件:

with open('clip_result.json', 'w', encoding='utf-8') as up:json.dump(submit_json, up, ensure_ascii=False)

对一系列视频进行分类,并将结果保存在一个JSON文件中。其中使用了PaddlePaddle的深度学习框架和OpenAI的CLIP模型来进行图像和文本的匹配和分类。
CLIP模型原理
可参考另一位助教写的博客点击直达
参考链接1

CLIP的训练数据是文本-图像对:一张图像和它对应的文本描述,这里希望通过对比学习,模型能够学习到文本-图像对的匹配关系。如下图所示,CLIP包括两个模型:Text Encoder和Image Encoder,其中Text Encoder用来提取文本的特征,可以采用NLP中常用的text transformer模型;而Image Encoder用来提取图像的特征,可以采用常用CNN模型或者vision transformer。
CLIP的思想非常简单,只需要看懂这幅图就可以了,左边是训练的原理,CLIP一共有两个模态,一个是文本模态,一个是视觉模态,分别对应了Text Encoder和Image Encoder。

  • Text Encoder用于对文本进行编码,获得其Embedding;
  • Image Encoder用于对图片编码,获得其Embedding。
  • 两个Embedding均为一定长度的单一向量。
    在这里插入图片描述在这里插入图片描述

pytorch版:
全部代码及注释

#导入库
import glob, json, os
import cv2
from PIL import Image
from tqdm import tqdm_notebook
import numpy as np
from sklearn.preprocessing import normalize
import matplotlib.pyplot as pltfrom PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
#加载预训练的CLIP模型:
#通过使用Hugging Face的transformers库,该代码从预训练模型 "openai/clip-vit-large-patch14-336" 中加载了一个CLIP模型,并创建了一个处理器processor
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14-336")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
#通过URL下载一张图像,并使用PIL库打开该图像,处理图像数据
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
#准备模型输入并获取输出,使用CLIP处理器processor对图像和文本进行处理,准备成模型需要的张量格式,然后将输入传递给CLIP模型,获取模型的输出
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)outputs = model(**inputs)logits_per_image = outputs.logits_per_image # this is the image-text similarity score# 得到图像-文本相似度得分
logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities# 对结果进行softmax处理,得到标签概率
#我们得到了图像和文本之间的相似度得分logits_per_image,并对其进行了softmax处理,得到了标签的概率分布#分别定义了中文和英文对应的关键词匹配字典。
cn_match_words = {"工况描述": ["高速/城市快速路", "城区", "郊区", "隧道", "停车场", "加油站/充电站", "未知"],"天气": ["晴天", "雨天", "多云", "雾天", "下雪", "未知"],"时间": ["白天", "夜晚", "拂晓/日暮", "未知"],"道路结构": ["十字路口", "丁字路口", "上下匝道", "车道汇入", "进出停车场", "环岛", "正常车道", "未知"],"一般障碍物": ["雉桶", "水马", "碎石/石块", "井盖", "减速带", "没有"],"道路异常情况": ["油污/水渍", "积水", "龟裂", "起伏不平", "没有", "未知"],"自车行为": ["直行", "左转", "右转", "停止", "掉头", "加速", "减速", "变道", "其它"],"最近的交通参与者": ["行人", "小型汽车", "卡车", "交警", "没有", "未知", "其它"],"最近的交通参与者行为": ["直行", "左转", "右转", "停止", "掉头", "加速", "减速", "变道", "其它"],
}en_match_words = {
"scerario" : ["suburbs","city street","expressway","tunnel","parking-lot","gas or charging stations","unknown"],
"weather" : ["clear","cloudy","raining","foggy","snowy","unknown"],
"period" : ["daytime","dawn or dusk","night","unknown"],
"road_structure" : ["normal","crossroads","T-junction","ramp","lane merging","parking lot entrance","round about","unknown"],
"general_obstacle" : ["nothing","speed bumper","traffic cone","water horse","stone","manhole cover","nothing","unknown"],
"abnormal_condition" : ["uneven","oil or water stain","standing water","cracked","nothing","unknown"],
"ego_car_behavior" : ["slow down","go straight","turn right","turn left","stop","U-turn","speed up","lane change","others"],
"closest_participants_type" : ["passenger car","bus","truck","pedestrain","policeman","nothing","others","unknown"],
"closest_participants_behavior" : ["slow down","go straight","turn right","turn left","stop","U-turn","speed up","lane change","others"],
}
#读取视频文件
cap = cv2.VideoCapture(r'D:/D/Download/360安全浏览器下载/初赛测试视频/初赛测试视频/41.avi')
#读取视频帧图像读取第一帧图片可以考虑一下怎么改进
img = cap.read()[1]
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)#转换图像颜色格式,将图像从BGR格式转换为RGB格式
#创建PIL图像对象
image = Image.fromarray(image)#使用PIL库的fromarray函数将NumPy数组(即经过颜色格式转换后的图像数据)转换为PIL的Image对象image.resize((600, 300))
#两个Python字典的定义和赋值操作
submit_json = {"作者" : "阿水" ,"时间" : "231011","模型名字" : "model_name","测试结果" : []
}submit_json = {"author" : "abc" ,"time" : "231011","model" : "model_name","test_results" : []
}
#使用了Python中的glob模块来匹配文件路径,获取指定目录下所有文件的路径并将结果进行排序
paths = glob.glob(r'.\chusai\*')
paths.sort()
#对paths列表中的每个视频路径进行处理,并生成相应的结果
for video_path in paths:print(video_path)#   clip_id = video_path.split('/')[-1]clip_id = os.path.split(video_path)[-1]print(clip_id)# clip_id = video_path.split('/')[-1][:-4]cap = cv2.VideoCapture(video_path)#打开视频文件img = cap.read()[1]#读取视频帧,将得到的图像赋值给变量imgimage = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)#   image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)image = Image.fromarray(image)  #将BGR格式的图像转换为RGB格式,并将结果赋值给变量image  #定义了一个字典single_video_result,包含了一些视频相关的属性single_video_result = {"clip_id": clip_id,"scerario" : "cityroad","weather":"clear","period":"daytime","road_structure":"namal","general_obstacle":"nothing","abnormal_condition":"nothing","ego_car_behavior":"go straight","closest_participants_type":"passenger car","closest_participants_behavior":"braking"}#历en_match_words字典中的关键字,对除了weather、road_structure、scerario和period以外的关键字进行处理for keyword in en_match_words.keys():if keyword not in ["weather", "road_structure", 'scerario', 'road_structure', 'period']:continue           texts = np.array(en_match_words[keyword])#转化为Numpy数组inputs = processor(text=list(texts), images=image, return_tensors="pt", padding=True)#使用模型的处理器(processor)对文本和图像进行处理,生成模型输入所需的格式。这里的处理器负责将文本和图像转换为模型能够接受的输入格式print(inputs)outputs = model(**inputs)#调用模型,将处理后的输入传入模型中,得到模型的输出。模型的输出包括了图像和文本之间的相似度得分logits_per_image = outputs.logits_per_image  # this is the image-text similarity scoreprobs = logits_per_image.softmax(dim=1)  # probs: [[1.2686e-03, 5.4499e-02, 6.7968e-04, 9.4355e-01]]将相似度得分进行softmax处理,得到每个类别的概率分布single_video_result[keyword] = texts[probs[0].argsort().numpy()[::-1][0]]#根据概率最大的类别,从文本数组中取出相应的文本,并将其作为该关键字对应的值,赋给single_video_result字典submit_json["test_results"].append(single_video_result)#将处理得到的single_video_result字典添加到submit_json["test_results"]列表中,最终得到一个JSON对象,其中包含了对每个视频的预测结果len(paths)# 遍历每个数据条目,对clip_id进行修改#首先,这个循环遍历了名为submit_json的JSON对象中的'test_results'字段对应的列表。对于列表中的每个条目(在代码中称为entry),它检查是否存在名为'clip_id'的字段。#如果存在'clip_id'字段,代码会执行entry['clip_id'].split("\\")[-1]操作。这行代码的作用是将'clip_id'字段的值按照反斜杠\分割,并取分割后的结果的最后一个部分。这样的操作通常用于获取文件路径中的文件名部分。
for entry in submit_json['test_results']:if 'clip_id' in entry:entry['clip_id'] = entry['clip_id'].split("\\")[-1]
#代码打开了一个名为coggle_result5.json的文件(路径为D:/D/Download/360安全浏览器下载/)以供写入,并使用json.dump将经过处理的submit_json对象写入到这个文件中。参数ensure_ascii=False表示在生成的JSON文件中允许非ASCII字符的存在,通常用于处理非英文文本。
with open(r'D:/D/Download/360安全浏览器下载/coggle_result5.json', 'w', encoding='utf-8') as up:json.dump(submit_json, up, ensure_ascii=False)
# "作者" : "abc" ,
# "时间" : "YYMMDD",
# "模型名字" : "model_name",
# "测试结果" :[
# {
# "视频ID" : "xxxx_1",
# "工况描述" : "城市道路",
# "天气":"未知",
# "时间":"夜晚",
# "道路结构":"匝道",
# "一般障碍物":"无",
# "道路异常情况":"无",
# "自车行为":"右转",
# "最近的交通参与者":"小轿车",
# "最近的交通参与者行为":"制动"
# },submit_json

目前分数132
在pytorch版上做的改进
1.换模型
clip-vit-large-patch14 是两年前的模型
clip-vit-large-patch14-336是一年前的模型
秉着新的肯定会比老的效果好的想法分数从121->126不错!
2.然后还尝试改了一下single_video_result
然后就132了然后就没有了

第一次直播:

第二次直播:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/144058.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【解决方案】危化品厂区安防系统EasyCVR+AI智能监控

危化品属于危险、易燃易爆、易中毒行类,一旦在生产运输过程中发生泄漏后果不堪想象,所以危化品的生产储存更需要严密、精细的监控,来保障危化品的安全。EasyCVRTSINGSEE青犀AI智能分析网关搭建的危化品智能监控方案就能很好的为危化品监管保驾…

基于STC12C5A60S2系列1T 8051单片机的数模芯片DAC0832实现数模转换应用

基于STC12C5A60S2系列1T 8051单片的数模芯片DAC0832实现数模转换应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍数模芯片DAC0832介绍通过按键调节数模芯片DAC0832…

WPF下实现拖动任意地方都可以拖动窗口

首先在xaml中添加事件 <Window PreviewMouseLeftButtonDown"Window_PreviewMouseLeftButtonDown"PreviewMouseMove"Window_PreviewMouseMove"PreviewMouseLeftButtonUp"Window_PreviewMouseLeftButtonUp"/>然后脚本输入 Point _pressedP…

【Spring进阶系列丨第二篇】Spring中的两大核心技术IoC(控制反转)与DI(依赖注入)

前言 我们都知道Spring 框架主要的优势是在 简化开发 和 框架整合 上&#xff0c;至于如何实现就是我们要学习Spring 框架的主要内容&#xff0c;今天我们就来一起学习Spring中的两大核心技术IoC&#xff08;控制反转&#xff09;与DI&#xff08;依赖注入&#xff09;。 文章目…

【数据结构】别跟我讲你不会冒泡排序

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前正在学习c和算法 ✈️专栏&#xff1a;数据结构 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章有啥瑕疵 希望大佬指点一二 如果文章对你有帮助…

【6】Spring Boot 3 集成组件:knift4j+springdoc+swagger3

目录 【6】Spring Boot 3 集成组件&#xff1a;knift4jspringdocswagger3OpenApi规范SpringFox Swagger3SpringFox工具&#xff08;不推荐&#xff09; Springdoc&#xff08;推荐&#xff09;从SpringFox迁移引入依赖配置jAVA Config 配置扩展配置&#xff1a;spring securit…

NumLevels

NumLevels&#xff1a;输入参数&#xff0c;最大的金字塔层数。默认auto&#xff0c;范围【0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, auto】。 AngleStart&#xff1a;输入参数&#xff0c;输入匹配时的起始角度。默认-0.39&#xff0c;建议值【 -3.14, -1.57, -0.79, -0.39, -0.20,…

CodeWhisperer 使用经验分享

今天给大家分享一下 Amazon CodeWhisperer 编程工具&#xff08;免费哦&#xff09;&#xff0c;使用这个软件后我的编码质量提升不少&#xff0c;给大家分享一下我的经验。希望大家支持哦。 Amazon CodeWhisperer 是亚⻢逊出品的一款基于机器学习的 AI 编程助手&#xff0c;可…

uniapp 实现微信小程序手机号一键登录

app 和 h5 手机号一键登录&#xff0c;参考文档&#xff1a;uni-app官网 以下是uniapp 实现微信小程序手机号一键登录 1、布局 <template><view class"mainContent"><image class"closeImg" click"onCloseClick"src"quic…

SQL学习(CTFhub)整数型注入,字符型注入,报错注入 -----手工注入+ sqlmap注入

目录 整数型注入 手工注入 为什么要将1设置为-1呢&#xff1f; sqlmap注入 sqlmap注入步骤&#xff1a; 字符型注入 手工注入 sqlmap注入 报错注入 手工注入 sqlmap注入 整数型注入 手工注入 先输入1 接着尝试2&#xff0c;3&#xff0c;2有回显&#xff0c;而3没有回显…

MySQL中外键的使用及外键约束策略

一、外键约束的概念 外键约束&#xff08;FOREIGN KEY,缩写FK是数据库设计的一个概念&#xff0c;它确保在两个表之间的关系保持数据的一致性和完整性。 外键是指表中的某个字段的依赖于另一张表中某个字段的值&#xff0c;而被依赖的字段必须具有主键约束或者唯一约束&#…

解决:java: 错误: 不支持发行版本 5 最有效方法

报错信息如图&#xff1a; 直接上终极方法&#xff1a; 修改配置文件 如图找到settings.xml文件 在标签中间插入如下代码&#xff08;jdk更改为自己电脑上的版本&#xff09; <profile><id>development</id><activation><jdk>11</jdk><…

计算机毕业设计项目选题推荐(免费领源码)java+ssm+mysql大学生本科毕业资格审核系统的设计与实现67038

摘 要 信息化社会内需要与之针对性的信息获取途径&#xff0c;但是途径的扩展基本上为人们所努力的方向&#xff0c;由于站在的角度存在偏差&#xff0c;人们经常能够获得不同类型信息&#xff0c;这也是技术最为难以攻克的课题。针对大学生本科毕业资格审核系统等问题&#…

如何优化谷歌商店里应用的评分评论1

低的评分和评论会引起的连锁反应&#xff0c;会对搜索和浏览可见性产生负面影响&#xff0c;同时拖累我们围绕应用商店优化所做的一切。所以解决负面评论的问题并提高应用的评分&#xff0c;对于提高应用商店的知名度至关重要。 1、分析应用评论。 我们需要分析应用程序当前获…

DBA_IND_STATISTICS 字段含义

功能 展示数据库中所有索引的优化器统计信息。 字段说明 参考&#xff1a;https://www.oceanbase.com/docs/enterprise-oceanbase-database-cn-10000000000885743

元数据管理,数字化时代企业的基础建设

随着新一代信息化、数字化技术的应用&#xff0c;众多领域通过科技革命和产业革命实现了深度化的数字改造&#xff0c;进入到以数据为核心驱动力的&#xff0c;全新的数据处理时代&#xff0c;并通过业务系统、商业智能BI等数字化技术和应用实现了数据价值&#xff0c;从数字经…

力扣刷题篇之数与位2

系列文章目录 目录 系列文章目录 前言 数值计算 总结 前言 本系列是个人力扣刷题汇总&#xff0c;本文是数与位。刷题顺序按照[力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 - 力扣&#xff08;LeetCode&#xff09; 数值计算 415. 字符串相加 - 力扣&#xff08;…

石原子科技亮相2023成都市信息领域新产品发布会

2023年11月13日至15日&#xff0c;由成都市互联网信息办公室、四川天府新区管委会、成都市经信局市新经济委、成都市农业农村局指导的以“信息创造价值 创新引领未来”为主题的成都市信息领域新产品发布会在科创生态岛1号馆举行。围绕人工智能、区块链、数字化绿色化、数字乡村…

iOS性能优化

了解屏幕成像的原理。 有一个电子枪然后在很多横轴方向上 发射电子&#xff0c;不同横轴的电子枪根据显示器中的硬件时钟产生一系列的定时信号&#xff0c;以此来让电子以不同的时间发射出去 这些电子一瞬间的运动形成了一帧动画。 CPU优化&#xff1a; 1.文本计算优化 如果一…

Unity Meta Quest 一体机开发(六):HandGrabInteractor 和 HandGrabInteractable 知识点

文章目录 &#x1f4d5;教程说明&#x1f4d5;HandGrabInteractor⭐HandGrabAPI⭐HandWristPoint⭐GripPoint⭐PinchPoint⭐PinchArea⭐HandGrabVisual⭐HandGrabGlow &#x1f4d5;HandGrabInteractable⭐Support Grab Type⭐Pinch Grab Rules 和 Palm Grab Rules⭐Unselect M…