时间序列预测实战(十五)PyTorch实现GRU模型长期预测并可视化结果

往期回顾:时间序列预测专栏——包含上百种时间序列模型带你从入门到精通时间序列预测

一、本文介绍

本文讲解的实战内容是GRU(门控循环单元),本文的实战内容通过时间序列领域最经典的数据集——电力负荷数据集为例,深入的了解GRU的基本原理和框架,GRU是时间序列领域最常见的Cell之一,其相对于LSTM需要的参数量更少结构也更加简单,经常用于复杂的模型的过度单元,本文的讲解内容包括详细的代码讲解,带你一行一行的理解整个项目的流程,从而对整个项目有一个深入的了解,如果你是时间序列领域的新人,这篇文章可以带你入门时间序列领域并对时间序列的流程有一个详细的了解。

预测类型->单元预测、多元预测、长期预测

代码地址->文末提供复制粘贴即可运行的代码块

二、框架原理介绍

1.GRU的基本原理

GRU(门控循环单元)是一种循环神经网络(RNN)的变体,主要用于处理序列数据,它的基本原理可以概括如下:

  1. 门控机制:GRU的核心是门控机制,包括更新门(update gate)和重置门(reset gate)。这些门控制着信息的流动,即决定哪些信息应该被保留,哪些应该被遗忘。

  2. 更新门:更新门帮助模型决定过去的信息有多少需要保留到当前状态。它是通过当前输入和前一个隐状态计算得出的,用于调节隐状态的更新程度。

  3. 重置门:重置门决定了多少过去的信息需要被忘记。它同样依赖于当前输入和前一个隐状态的信息。当重置门接近0时,模型会“忘记”过去的隐状态,只依赖于当前输入。

  4. 当前隐状态的计算:利用更新门和重置门的输出,结合前一隐状态和当前输入,GRU计算出当前的隐状态。这个隐状态包含了序列到目前为止的重要信息。

  5. 输出:GRU的最终输出通常是在序列的每个时间步上产生的,或者在序列的最后一个时间步产生,取决于具体的应用场景。

总结:GRU相较于传统的RNN,其优势在于能够更有效地处理长序列数据,减轻了梯度消失的问题。同时,它通常比LSTM(长短期记忆网络)更简单,因为它有更少的参数。

1.1GRU的基本框架

​​

上面的图片为一个GRU的基本结构图,解释如下->

  • 更新门(z) 在决定是否用新的隐藏状态更新当前隐藏状态时扮演重要角色。
  • 重置门(r) 决定是否忽略之前的隐藏状态。

这些部分是GRU的核心组成,它们共同决定了网络如何在序列数据中传递和更新信息,这对于时间序列分析至关重要。

总结:这个 GRU真的是结构太简单了,没什么好讲解的,如果你是时间序列预测的新手这篇文章能够帮助你很好的入门时间序列并且能够对时间序列的整体流程有一个完整的了解如果你是大神这边文章可能并不能给你带来太多的帮助。

三、数据集介绍

我们本文用到的数据集是官方的ETTh1.csv ,该数据集是一个用于时间序列预测的电力负荷数据集,它是 ETTh 数据集系列中的一个。ETTh 数据集系列通常用于测试和评估时间序列预测模型。以下是 ETTh1.csv 数据集的一些内容:

数据内容:该数据集通常包含有关电力系统的多种变量,如电力负荷、价格、天气情况等。这些变量可以用于预测未来的电力需求或价格。

时间范围和分辨率:数据通常按小时或天记录,涵盖了数月或数年的时间跨度。具体的时间范围和分辨率可能会根据数据集的版本而异。 

以下是该数据集的部分截图->

​​

四、项目的全部代码

import time
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import DataLoader
import torch
from torch.utils.data import Dataset# 随机数种子
np.random.seed(0)class TimeSeriesDataset(Dataset):def __init__(self, sequences):self.sequences = sequencesdef __len__(self):return len(self.sequences)def __getitem__(self, index):sequence, label = self.sequences[index]return torch.Tensor(sequence), torch.Tensor(label)def calculate_mae(y_true, y_pred):# 平均绝对误差mae = np.mean(np.abs(y_true - y_pred))return mae"""
数据定义部分
"""
true_data = pd.read_csv('ETTh1.csv')  # 填你自己的数据地址,自动选取你最后一列数据为特征列target = 'OT'  # 添加你想要预测的特征列
test_size = 0.15  # 训练集和测试集的尺寸划分
train_size = 0.85  # 训练集和测试集的尺寸划分
pre_len = 4  # 预测未来数据的长度
train_window = 32  # 观测窗口# 这里加一些数据的预处理, 最后需要的格式是pd.series
true_data = np.array(true_data[target])# 定义标准化优化器
scaler_train = MinMaxScaler(feature_range=(0, 1))
scaler_test = MinMaxScaler(feature_range=(0, 1))# 训练集和测试集划分
train_data = true_data[:int(train_size * len(true_data))]
test_data = true_data[-int(test_size * len(true_data)):]
print("训练集尺寸:", len(train_data))
print("测试集尺寸:", len(test_data))# 进行标准化处理
train_data_normalized = scaler_train.fit_transform(train_data.reshape(-1, 1))
test_data_normalized = scaler_test.fit_transform(test_data.reshape(-1, 1))# 转化为深度学习模型需要的类型Tensor
train_data_normalized = torch.FloatTensor(train_data_normalized)
test_data_normalized = torch.FloatTensor(test_data_normalized)def create_inout_sequences(input_data, tw, pre_len):# 创建时间序列数据专用的数据分割器inout_seq = []L = len(input_data)for i in range(L - tw):train_seq = input_data[i:i + tw]if (i + tw + 4) > len(input_data):breaktrain_label = input_data[i + tw:i + tw + pre_len]inout_seq.append((train_seq, train_label))return inout_seq# 定义训练器的的输入
train_inout_seq = create_inout_sequences(train_data_normalized, train_window, pre_len)
test_inout_seq = create_inout_sequences(test_data_normalized, train_window, pre_len)# 创建数据集
train_dataset = TimeSeriesDataset(train_inout_seq)
test_dataset = TimeSeriesDataset(test_inout_seq)# 创建 DataLoader
batch_size = 32  # 你可以根据需要调整批量大小
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)class GRU(nn.Module):def __init__(self, input_dim=1, hidden_dim=32, num_layers=1, output_dim=1, pre_len= 4):super(GRU, self).__init__()self.pre_len = pre_lenself.num_layers = num_layersself.hidden_dim = hidden_dim# 替换 LSTM 为 GRUself.gru = nn.GRU(input_dim, hidden_dim,num_layers=num_layers, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)self.relu = nn.ReLU()self.dropout = nn.Dropout(0.1)def forward(self, x):h0_gru = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)out, _ = self.gru(x, h0_gru)out = self.dropout(out)# 取最后 pre_len 时间步的输出out = out[:, -self.pre_len:, :]out = self.fc(out)out = self.relu(out)return outlstm_model = GRU(input_dim=1, output_dim=1, num_layers=2, hidden_dim=train_window, pre_len=pre_len)
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(lstm_model.parameters(), lr=0.005)
epochs = 20
Train = True  # 训练还是预测if Train:losss = []lstm_model.train()  # 训练模式for i in range(epochs):start_time = time.time()  # 计算起始时间for seq, labels in train_loader:lstm_model.train()optimizer.zero_grad()y_pred = lstm_model(seq)single_loss = loss_function(y_pred, labels)single_loss.backward()optimizer.step()print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')losss.append(single_loss.detach().numpy())torch.save(lstm_model.state_dict(), 'save_model.pth')print(f"模型已保存,用时:{(time.time() - start_time) / 60:.4f} min")else:# 加载模型进行预测lstm_model.load_state_dict(torch.load('save_model.pth'))lstm_model.eval()  # 评估模式results = []reals = []losss = []for seq, labels in test_loader:pred = lstm_model(seq)mae = calculate_mae(pred.detach().numpy(), np.array(labels))  # MAE误差计算绝对值(预测值  - 真实值)losss.append(mae)for j in range(batch_size):for i in range(pre_len):reals.append(labels[j][i][0].detach().numpy())results.append(pred[j][i][0].detach().numpy())reals = scaler_test.inverse_transform(np.array(reals).reshape(1, -1))[0]results = scaler_test.inverse_transform(np.array(results).reshape(1, -1))[0]print("模型预测结果:", results)print("预测误差MAE:", losss)plt.figure()plt.style.use('ggplot')# 创建折线图plt.plot(reals, label='real', color='blue')  # 实际值plt.plot(results, label='forecast', color='red', linestyle='--')  # 预测值# 增强视觉效果plt.grid(True)plt.title('real vs forecast')plt.xlabel('time')plt.ylabel('value')plt.legend()plt.savefig('test——results.png')

五、模型代码的详细讲解

整个代码的流程我会从模型的入口参数定义开始进行讲解, 然后顺序讲解在直到模型的结束。

true_data = pd.read_csv('ETTh1.csv')  # 填你自己的数据地址,自动选取你最后一列数据为特征列

这一步就是读取你的数据了~不给大家讲了主要是csv的格式数据。 

target = 'OT'  # 添加你想要预测的特征列
test_size = 0.15  # 训练集和测试集的尺寸划分
train_size = 0.85  # 训练集和测试集的尺寸划分
pre_len = 4  # 预测未来数据的长度
train_window = 32  # 观测窗口

这一步就是参数定义的部分,讲解我已经再代码里标注了出来,需要说说的就是,pre_len和train_window这两个参数,

其中pre_len就是你预测未来数据的长度,假设你有一百条数据你想知道未来多少条数据的信息就填多少。 

train_window是数据的观测窗口,就是你利用多少条数据去预测你定义的pre_len长度。

# 这里加一些数据的预处理, 最后需要的格式是pd.series
true_data = np.array(true_data[target])

这是提取出特征列,根据前面你定义的target。 

# 定义标准化优化器
scaler_train = MinMaxScaler(feature_range=(0, 1))
scaler_test = MinMaxScaler(feature_range=(0, 1))# 训练集和测试集划分
train_data = true_data[:int(train_size * len(true_data))]
test_data = true_data[-int(test_size * len(true_data)):]
print("训练集尺寸:", len(train_data))
print("测试集尺寸:", len(test_data))# 进行标准化处理
train_data_normalized = scaler_train.fit_transform(train_data.reshape(-1, 1))
test_data_normalized = scaler_test.fit_transform(test_data.reshape(-1, 1))# 转化为深度学习模型需要的类型Tensor
train_data_normalized = torch.FloatTensor(train_data_normalized)
test_data_normalized = torch.FloatTensor(test_data_normalized)

这部分是定义优化器,我们的深度学习模型输入一般都是-1到1(虽然这不是必须的,但是如果你不进行标准化处理效果真是天差地别),然后是测试集和训练集的划分,和根据数据进行标准化处理的操作,并且将数据转化为tensor的格式(tensor是我们深度学习特有的数据格式)。

# 定义训练器的的输入
train_inout_seq = create_inout_sequences(train_data_normalized, train_window, pre_len)
test_inout_seq = create_inout_sequences(test_data_normalized, train_window, pre_len)

这一部分是重点!!!!!

时间序列的数据和其他领域的不一样他需要滑窗的数据形式,假设我有100条数据,前面定义的滑窗大小是32预测未来数据的长度是4那么他就会用32和4去滑动数据,

所以我们的到数据是多少呢就是100 - 32 - 4 =54条数据(每条数据包含32条观测数据和4个标签数据),这里必须理解大家这是时间序列的基础,他是不能够直接用Dataloader进行数据加载的。

# 创建数据集
train_dataset = TimeSeriesDataset(train_inout_seq)
test_dataset = TimeSeriesDataset(test_inout_seq)# 创建 DataLoader
batch_size = 32  # 你可以根据需要调整批量大小
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)

这部分是创建数据集和Dataloader数据加载器,利用Dataloader的好处是可以避免内存爆炸,但是我们时间序列的数据一般都不大不会有这种情况。

class GRU(nn.Module):def __init__(self, input_dim=1, hidden_dim=32, num_layers=1, output_dim=1, pre_len= 4):super(GRU, self).__init__()self.pre_len = pre_lenself.num_layers = num_layersself.hidden_dim = hidden_dim# 替换 LSTM 为 GRUself.gru = nn.GRU(input_dim, hidden_dim,num_layers=num_layers, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)self.relu = nn.ReLU()self.dropout = nn.Dropout(0.1)def forward(self, x):h0_gru = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)out, _ = self.gru(x, h0_gru)out = self.dropout(out)# 取最后 pre_len 时间步的输出out = out[:, -self.pre_len:, :]out = self.fc(out)out = self.relu(out)return out

这是模型的内部,就是一个简单的gru模型,我来说一下其中的通道数情况,我们输入的X是三维的分别是[batch_size, train_window, target数量], 这是我们输入x的情况,经过gru进行处理我们添加了一个dropout避免过拟合,然后取出了你想要预测长度的步长数据,最后经过全连接层进行一个结果输出,大家有兴趣建议还是debug一下我这么讲你是不能理解的,最好还是实际动手debug看一下其中的通道数变化情况。

lstm_model = GRU(input_dim=1, output_dim=1, num_layers=2, hidden_dim=train_window, pre_len=pre_len)
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(lstm_model.parameters(), lr=0.005)
epochs = 20
Train = True  # 训练还是预测

这里实例化了我们的模型,定义了MSE损失函数,和优化器Adam和训练轮次,其中的Train是来判断是否进行训练。

if Train:losss = []lstm_model.train()  # 训练模式for i in range(epochs):start_time = time.time()  # 计算起始时间for seq, labels in train_loader:lstm_model.train()optimizer.zero_grad()y_pred = lstm_model(seq)single_loss = loss_function(y_pred, labels)single_loss.backward()optimizer.step()print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')losss.append(single_loss.detach().numpy())torch.save(lstm_model.state_dict(), 'save_model.pth')print(f"模型已保存,用时:{(time.time() - start_time) / 60:.4f} min")

 如果Train为True则开始训练执行上面的代码,这是一个标准pytorch框架下的训练过程就不给大家 说了,如果不能理解的话大家可以去补补基础,或者评论区问我我在给大家讲讲。

else:# 加载模型进行预测lstm_model.load_state_dict(torch.load('save_model.pth'))lstm_model.eval()  # 评估模式results = []reals = []losss = []for seq, labels in test_loader:pred = lstm_model(seq)mae = calculate_mae(pred.detach().numpy(), np.array(labels))  # MAE误差计算绝对值(预测值  - 真实值)losss.append(mae)for j in range(batch_size):for i in range(pre_len):reals.append(labels[j][i][0].detach().numpy())results.append(pred[j][i][0].detach().numpy())

如果Train为False时候则开始进行评估模式我们利用test的数据集进行测试评估训练模型,

 reals = scaler_test.inverse_transform(np.array(reals).reshape(1, -1))[0]results = scaler_test.inverse_transform(np.array(results).reshape(1, -1))[0]print("模型预测结果:", results)print("预测误差MAE:", losss)plt.figure()plt.style.use('ggplot')# 创建折线图plt.plot(reals, label='real', color='blue')  # 实际值plt.plot(results, label='forecast', color='red', linestyle='--')  # 预测值# 增强视觉效果plt.grid(True)plt.title('real vs forecast')plt.xlabel('time')plt.ylabel('value')plt.legend()plt.savefig('test——results.png')

 这一部分是我们预测值和真实值之间的对比,来确定我们预测的好坏,后面的结果分析会有展示。

六、模型的训练和预测

上面我把大多数的代码都讲了一便大家应该对整个过程有一个大致的了解下面来大家进行训练看看模型的结果。

6.1模型的训练

我们将我前面提供的全部代码块复制粘贴到随便一个.py的文件内然后将数据集和特征数填写进去,就可以开始训练模型了。

训练的过程中控制台会输出训练结果和损失,可以看到刚开始我们的损失非常的大,到训练结束之后我们的损失如下会变的非常小。

​​

 可以看到我们的模型损失只有0.010.5901一个批次下可以说模型的拟合效果是非常的好,我们下面来看一下模型的损失图像,可以看到我们模型拟合速度比较一般在20个epoch左右在完全拟合。

6.2模型的评估

经过训练之后我们可以开始进行模型的评估了。

6.2.1结果展示

下面的图片是模型的评估结果,其中评估数据大概有800条左右,评估了大概八百条数据,结果只能说太一般了。

6.2.2结果分析

这个模型结果只能说在意料之中,大家看其中的图像可以看到明显的数据滞后性,这一问题我在前面利用过ARIMA-LSTM进行解决进行了完美的解决,大家有兴趣可以去回去评估一下,这单个GRU模型结果在这样只能说是正常的情况。

全文总结

到此本文已经全部讲解完成了,希望能够帮助到大家,在这里也给大家推荐一些我其它的博客的时间序列实战案例讲解,其中有数据分析的讲解就是我前面提到的如何设置参数的分析博客,最后希望大家订阅我的专栏,本专栏均分文章均分98,并且免费阅读。

概念理解 

15种时间序列预测方法总结(包含多种方法代码实现)

数据分析

时间序列预测中的数据分析->周期性、相关性、滞后性、趋势性、离群值等特性的分析方法

机器学习——难度等级(⭐⭐)

时间序列预测实战(四)(Xgboost)(Python)(机器学习)图解机制原理实现时间序列预测和分类(附一键运行代码资源下载和代码讲解)

深度学习——难度等级(⭐⭐⭐⭐)

时间序列预测实战(五)基于Bi-LSTM横向搭配LSTM进行回归问题解决

时间序列预测实战(七)(TPA-LSTM)结合TPA注意力机制的LSTM实现多元预测

时间序列预测实战(三)(LSTM)(Python)(深度学习)时间序列预测(包括运行代码以及代码讲解)

时间序列预测实战(十一)用SCINet实现滚动预测功能(附代码+数据集+原理介绍)

时间序列预测实战(十二)DLinear模型实现滚动长期预测并可视化预测结果

Transformer——难度等级(⭐⭐⭐⭐)

时间序列预测模型实战案例(八)(Informer)个人数据集、详细参数、代码实战讲解

时间序列预测模型实战案例(一)深度学习华为MTS-Mixers模型

时间序列预测实战(十三)定制化数据集FNet模型实现滚动长期预测并可视化结果

时间序列预测实战(十四)Transformer模型实现长期预测并可视化结果(附代码+数据集+原理介绍)

个人创新模型——难度等级(⭐⭐⭐⭐⭐)

时间序列预测实战(十)(CNN-GRU-LSTM)通过堆叠CNN、GRU、LSTM实现多元预测和单元预测

传统的时间序列预测模型(⭐⭐)

时间序列预测实战(二)(Holt-Winter)(Python)结合K-折交叉验证进行时间序列预测实现企业级预测精度(包括运行代码以及代码讲解)

时间序列预测实战(六)深入理解ARIMA包括差分和相关性分析

融合模型——难度等级(⭐⭐⭐)

时间序列预测实战(九)PyTorch实现融合移动平均和LSTM-ARIMA进行长期预测

​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/143786.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【微服务专题】Spring启动过程源码解析

目录 前言阅读对象阅读导航前置知识笔记正文一、SpringBoot启动过程源码解析1.1 SpringBoot启动过程源码流程图1.2 流程解析补充1.2.1 SpringApplicationRunListeners:SpringBoot运行过程监听器 学习总结感谢 前言 这部分只是个人的自结,方便后面回来看…

计算机网络五层协议的体系结构

计算机网络中两个端系统之间的通信太复杂,因此把需要问题分而治之,通过把一次通信过程中涉及的所有问题分层归类来进行研究和处理 体系结构是抽象的,实现是真正在运行的软件和硬件 1.实体、协议、服务和服务访问点 协议必须把所有不利条件和…

文件包含学习笔记总结

文件包含概述 ​ 程序开发人员通常会把可重复使用函数或语句写到单个文件中,形成“封装”。在使用某个功能的时候,直接调用此文件,无需再次编写,提高代码重用性,减少代码量。这种调用文件的过程通常称为包含。 ​ 程…

ClickHouse 面试题

文章目录 什么是 ClickHouse?ClickHouse 有哪些应用场景?ClickHouse 列式存储的优点有哪些?ClickHouse 的缺点是是什么?ClickHouse 的架构是怎样的?ClickHouse 的逻辑数据模型?ClickHouse 的核心特性&#…

高性能面试八股文之编译流程程序调度

1. C的编译流程 C语言程序的编译过程通常包括预处理(Preprocessing)、编译(Compilation)、汇编(Assembly)、链接(Linking)四个主要阶段。下面是这些阶段的详细说明: 1.…

PDF转化为图片

Java 类 PDF2Image 在包 com.oncloudsoft.zbznhc.common.util.pdf 中是用来将 PDF 文件转换为图像的。它使用了 Apache PDFBox 库来处理 PDF 文档并生成图像。下面是类中每个部分的详细解释: 类和方法说明 类 PDF2Image: 使用了 Lombok 库的 Slf4j 注解&#xff0c…

hivesql连续日期统计最大逾期/未逾期案例

1、虚表(测试表和数据) create test_table as select a.cust_no, a.r_date, a.yqts from ( select 123 as cust_no, 20231101 as r_date, 0 as yqts union all select 123 as cust_no, 20231102 as r_date, 1 as yqts union all select 123 as cust_no, 20231103 as r_d…

PPT转PDF转换器:便捷的批量PPT转PDF转换软件

在数字化时代,文档转换已成为日常工作不可或缺的一环。特别是对于那些需要转发或发布演示文稿的人来说,如果希望共享给他人的PPT文件在演示过程中不被修改,那么将PPT文件转换为PDF格式已经成为一个常见的选择。大多数PDF阅读器程序都支持全屏…

Rust实战教程:构建您的第一个应用

大家好!我是lincyang。 今天,我们将一起动手实践,通过构建一个简单的Rust应用来深入理解这门语言。 我们的项目是一个命令行文本文件分析器,它不仅能读取和显示文件内容,还会提供一些基础的文本分析,如计算…

pandas教程:GroupBy Mechanics 分组机制

文章目录 Chapter 10 Data Aggregation and Group Operations(数据汇总和组操作)10.1 GroupBy Mechanics(分组机制)1 Iterating Over Groups(对组进行迭代)2 Selecting a Column or Subset of Columns (选中…

小程序中如何设置门店信息

小程序是商家转型升级的利器,小程序中门店信息的准确性和完整性对于用户的体验和信任度都有很大的影响。下面具体介绍门店信息怎么在小程序中进行设置。 在小程序管理员后台->门店设置处,可以门店设置相关。主要分为2个模块,一个是门店级…

Linux-CentOS重要模块

软件包管理器:CentOS使用Yum(Yellowdog Updater, Modified)作为其包管理器。Yum提供了一种方便的方式来安装、更新和删除软件包,并自动解决依赖关系。 RPM:RPM(RPM Package Manager)是CentOS中…

CocosCreator3.8神秘面纱 CocosCreator 项目结构说明及编辑器的简单使用

我们通过Dashboard 创建一个2d项目,来演示CocosCreator 的项目结构。 等待创建完成后,会得到以下项目工程: 一、assets文件夹 assets文件夹:为资源目录,用来存储所有的本地资源,如各种图片,脚本…

posix定时器的使用

POSIX定时器是基于POSIX标准定义的一组函数,用于实现在Linux系统中创建和管理定时器。POSIX定时器提供了一种相对较高的精度,可用于实现毫秒级别的定时功能。 POSIX定时器的主要函数包括: timer_create():用于创建一个定时器对象…

C++网络编程库编写自动爬虫程序

首先&#xff0c;我们需要使用 C 的网络编程库来编写这个爬虫程序。以下是一个简单的示例&#xff1a; #include <iostream> #include <string> #include <curl/curl.h> #include <openssl/ssl.h>const char* proxy_host "duoip"; const in…

LuatOS-SOC接口文档(air780E)--pack - 打包和解包格式串

pack.unpack( string, format, init) 解包字符串 参数 传入值类型 解释 string 需解包的字符串 string 格式化符号 ‘<’:设为小端编码 ‘>’:设为大端编码 ‘’:大小端遵循本地设置 ‘z’:空字符串 ‘p’:byte字符串 ‘P’:word字符串 ‘a’:size_t字符串 ‘A’:…

springmvc中针对一个controller方法配置两个url请求

记录一个小知识点。 某些应用场景》。。你可能需要不同的url请求得到相同的结果&#xff0c;那么你写两个方法总是不太好的&#xff0c;使用下面的方法可以解决这个问题。 RequestMapping(value { "/item/index.htm", "/product/index.htm" })public Mod…

k8s yaml文件含义

文章目录 1、YAML的文件格式和注意事项2、YAML各个字段含义 1、YAML的文件格式和注意事项 不支持制表符tab键缩进&#xff0c;需要使用空格缩进&#xff0c;使用缩进表示层级关系通常开头缩进2个空格&#xff0c;缩进的空格数不重要&#xff0c;只要相同层级的元素左对齐即可字…

【Python】基础(学习笔记)

一、Python介绍 1、Python优点 学习成本低 开源 适应⼈群⼴泛 应⽤领域⼴泛 2、Python解释器 Python解释器作用&#xff1a;运行Python文件 Python解释器分类 CPython&#xff1a;C语⾔开发的解释器[官⽅]&#xff0c;应⽤⼴泛的解释器。 IPython&#xff1a;基于CPyth…

为RabbitMQ配置SSL

1. 安装 OpenSSL 从 OpenSSL 的官方网站&#xff08;https://www.openssl.org/&#xff09;下载 OpenSSL 工具的 Windows 版本&#xff0c;并安装。 2. 创建 SSL 证书和私钥 执行以下命令以生成私钥文件&#xff08;.key&#xff09;和证书签名请求文件&#xff08;.csr&…