回顾 — SFA:简化快速 AlexNet(模糊分类)

模糊图像的样本

一、说明

        在本文回顾了基于深度学习的模糊图像分类(SFA)。在本文中:Simplified-Fast-AlexNet (SFA)旨在对图像是否因散焦模糊高斯模糊雾霾模糊运动模糊而模糊进行分类。

二、大纲

  1. 图像模糊建模简要概述
  2. 简化快速 AlexNet (SFA):网络架构
  3. 数据集
  4. 实验结果

三、图像模糊建模概述

  • 图像模糊问题可以看作是从高质量图像到低质量模糊图像的图像退化过程:

  • 其中F表示退化图像,f是无损图像,h 表示模糊核,又名点扩散函数(PSF),*表示卷积算子,n表示附加噪声,这里,n是高斯白噪声。

3.1. 高斯模糊

  • 在许多实际应用中,例如遥感和卫星成像,高斯核函数被视为大气湍流的核函数:

  • 其中,σ为核半径,R为支撑区域,通常满足3σ标准

3.2. 运动模糊

  • 运动模糊是另一种需要考虑的模糊,它是由目标和相机之间的相对线性运动引起的:

  • 其中M表示运动长度(以像素为单位),ω表示运动方向与x轴之间的角度。

3.3. 散焦模糊

  • 散焦模糊是日常生活中最常见的,可以通过柱面函数来建模:

  • 其中r表示 模糊半径,与散焦程度成正比。

3.4. 雾霾模糊

  • 雾霾模糊是由自然雾的干扰造成的。在本文中,雾霾模糊没有通过任何PSF来模拟,因为现实生活中存在大量样本并且易于收集用于实验应用。

四、简化快速AlexNet(SFA):网络架构

简化快速 AlexNet (SFA):网络架构

  • 5个卷积层1个全连接层
  • AlexNet每个卷积层的输出数按0.5的比例进行比例压缩。这样做的原因是,与 2012 年 ImageNet 分类竞赛中数千个图像类别相比,四种模糊类型分类是一个相对简单的任务。
  • 另一方面,由于80%以上的参数存储在FC中,因此从AlexNet的原始模型中删除了前两个FC,以提高速度和实时性。
  • 在第 1、2 和 5 层使用批量标准化,而不是原始的局部响应标准化。
  • 输入:输入图像的大小为227×227×3。
  • 第一层:Conv_1:48 个大小为 11×11 的核,步长为 4 像素,pad 为 0;MaxPool_1:大小为 3×3 的内核,2 个像素的步长和 0 的填充。获得 48×27×27 的特征图作为输出。
  • 第二层:Conv_2 使用大小为 5×5 的内核、1 像素的步长和 2 像素的垫;MaxPool_2:大小为 3×3 的内核,步长为 1 像素,填充为 0。
  • 第三层:Conv_3:尺寸为 5×5 的内核,1 像素的步长和 2 像素的填充。
  • 第 4 层:Conv_4 为:尺寸为 3×3 的内核,2 像素的步长和 0 的填充。
  • 第5层:Conv_5:尺寸为3×3的内核,1像素的步长和1的垫;MaxPool_5:内核大小为 3×3,步长为 2 像素,pad 为 0。
  • 第 6 层:全连接层和 ReLU。
  • 因此,SFA不同隐藏层的数据流如下: 227×227×3 > 27×27×48 > 13×13×128 > 13×13×192 > 13×13×192 > 6×6× 128 > 1×1×4。
  • 使用咖啡。

五、数据集

5.1. 训练数据集

  • 使用200,000 个 128×128×3 全局模糊块进行训练。
  • 简而言之,这些补丁是从牛津建筑数据集和加州理工学院 101 数据集应用的合成高斯模糊、运动模糊和散焦模糊中裁剪出来的,以及从在线网站收集的真实雾霾模糊图像中裁剪出来的。

5.2. 测试数据集1

  • 选择 Berkeley 数据集 200 张图像和 Pascal VOC 2007 数据集作为测试数据集。
  • 总共获得了22,240 个全局模糊测试样本块,其中 5560 个雾霾模糊图像块与训练样本具有相同的来源。

5.3. 测试数据集2

  • 构建了由10,080 个自然全局模糊图像块组成的数据集。这些样本都是从与训练数据集中的雾霾模糊样本相同的网站收集的。

六、实验结果

6.1. 损耗曲线和精度曲线

AlexNet和SFA的损失曲线和准确率曲线

  • 尽管AlexNet和SFA这两个模型的细节有所不同,但损失和准确率都达到了相似的值,这表明两个模型在分类准确率标准方面的性能相当。

6.2. 与AlexNet的比较

与AlexNet的比较

  • P_N:模型参数编号。
  • L_N:模型深度。
  • F_T:单幅图像的前向传播时间。
  • B_T:单幅图像的误差后向传播时间。
  • CLF_T:识别单张图像的时间。
  • Tr_T:模型训练时间。
  • 错误:测试数据集1的分类错误率。

AlexNet的P_N大约是SFA的1000倍。

SFA的CLF_T比AlexNet经济0.5s ,这表明SFA更适合实际应用。

SFA的总训练时间不到一天,而AlexNet则需要大约两天。

SFA的分类错误率仅比AlexNet大0.0105 。

6.3. SOTA比较

  • 两步法[4]、单层神经网络[8]和DNN[9]的分类精度来自原始文章。(这很奇怪,因为数据集不同。但可以理解的是,可能无法重新实现。)
  • Accuracy1 是在测试数据集 1 上进行测试,Accuracy2 是在测试数据集 2 上进行测试。
  • 基于学习特征的方法的预测精度(>90%)通常优于手工制作特征的方法(<90%)。
  • SFA在模拟测试数据集上的分类准确率为96.99%,略低于AlexNet的97.74%,但仍然优于DNN模型的95.2%。
  • 此外,SFA在自然模糊数据集上的最佳性能为93.75%,略低于94.10%,但SFA的速度和实时性明显优于AlexNet

七、参考

[2017 ISA] [SFA]
基于深度学习的模糊图像分类 
曾锡豪

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/143161.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode 快速打印console.log

第一步 输入这些 {// Print Selected Variabl 为自定义快捷键中需要使用的name&#xff0c;可以自行修改"Print Selected Variable": {"body": ["\nconsole.log("," %c $CLIPBOARD: ,"," background-color: #3756d4; padding:…

action3录制出来的LRF文件的正确打开方式

你会发现使用大疆的产品录制出来的视频会有两种格式&#xff1a;LRF和MP4 这个LRF文件是低分辨率、低码率的预览文件&#xff0c;非常适合预览。 这个文件可以直接通过修改文件后缀转化为.mp4格式

14——1

这句话的意思是&#xff0c;如图中月份12天数23时&#xff0c;就是1223&#xff1b;当月份9天数2时&#xff0c;就是0902. 可以看到在上面给出的数组元素中&#xff0c;并没有连续挨在一起的2023数字元素——就有人可能输出答案0。 所以这里要看一下—— ——子序列的含义&…

云服务器如何选?腾讯云2核2G3M云服务器88元一年!

作为一名程序员&#xff0c;在选择云服务器时&#xff0c;我们需要关注几个要点&#xff1a;网络稳定性、价格以及云服务商的规模。这些要素将直接影响到我们的使用体验和成本效益。接下来&#xff0c;我将为大家推荐一款性价比较高的轻应用云服务器。 腾讯云双11活动 腾讯云…

解密图像处理中的利器——直方图与均衡化

直方图与均衡化是数字图像处理中常用的重要工具&#xff0c;它们能够帮助我们更好地理解和改善图像的亮度分布。本文将首先介绍直方图的基本概念以及其在图像处理中的意义&#xff0c;接着详细阐述直方图均衡化的原理和算法。同时&#xff0c;文章将探讨直方图均衡化在图像增强…

利用网络管理解决方案简化网络运维

当今的网络正朝着提高敏捷性和动态功能的方向发展&#xff0c;以支持高级网络要求和关键业务流程&#xff0c;这导致 IT 基础架构也跨越无线、虚拟和混合环境。但是&#xff0c;随着网络的快速发展&#xff0c;如果没有合适的解决方案&#xff0c;IT 管理员很难管理它们&#x…

基于ChatGPT的文本生成艺术框架—WordArt Designer

WordArt Designer是一个基于gpt-3.5 turbo的艺术字生成框架&#xff0c;包含四个关键模块:LLM引擎、SemTypo、Styltypo和TextTypo模块。由gpt-3.5 turbo驱动的LLM引擎可以解释用户输入&#xff0c;从而将抽象概念转化为具体的设计。 SemTypo模块使用语义概念优化字体设计&…

LoadRunner脚本编写之三(事务函数)

关于脚本的这块&#xff0c;前两篇都在讲C语言&#xff0c;其实&#xff0c;要整理点实用的东西挺难&#xff0c;在应用中多对录制的脚本分析&#xff0c;但对于新手学脚本确实无从下手。 先贴一个脚本&#xff1a; 完整代码&#xff1a; 重点代码部分&#xff1a; Action(…

【python】Django——templates模板、静态文件、django模板语法、请求和响应

笔记为自我总结整理的学习笔记&#xff0c;若有错误欢迎指出哟~ 【Django专栏】 Django——django简介、django安装、创建项目、快速上手 Django——templates模板、静态文件、django模板语法、请求和响应 Django——连接mysql数据库 Django——templates模板、静态文件、djang…

如何实现Redisson分布式锁

首先&#xff0c;不要将分布式锁想的太复杂&#xff0c;如果我们只是平时业务中去使用&#xff0c;其实不算难&#xff0c;但是很多人写的文章不能让人快速上手&#xff0c;接下来&#xff0c;一起看下Redisson分布式锁的快速实现 Redisson 是一个在 Redis 的基础上实现的 Java…

公益SRC实战|SQL注入漏洞攻略

目录 一、信息收集 二、实战演示 三、使用sqlmap进行验证 四、总结 一、信息收集 1.查找带有ID传参的网站&#xff08;可以查找sql注入漏洞&#xff09; inurl:asp idxx 2.查找网站后台&#xff08;多数有登陆框&#xff0c;可以查找弱口令&#xff0c;暴力破解等漏洞&…

SpringBoot和Spring源码下载

1.下载&#xff1a;在一个空的干净地创建一个文件夹叫springsourcecode&#xff0c;其实叫什么都行的。 git clone https://github.com/spring-projects/spring-framework.git 2.JDK要和gradle匹配 我们要21的&#xff0c;今天为止2023年11月13日&#xff0c;idea是2023.2。 …

考研分享第3期 | 211本378分上岸大连理工电子信息经验贴

考研分享第3期 | 211本378分上岸大连理工电子信息经验贴 一、个人信息 姓名&#xff1a;Ming 本科院校&#xff1a;某211学校电子信息工程学院 电子科学与技术专业 上岸院校&#xff1a;大连理工大学 电子信息与电气工程学部 电子信息&#xff08;0854&#xff09; 择校意…

数据中心:精密空调监控,这招太高效了!

在当今日益复杂的工业环境中&#xff0c;精密空调系统的监控和管理变得至关重要。随着科技的迅猛发展&#xff0c;各行各业对温度、湿度和空气质量等参数的高度控制需求不断增加。 精密空调监控系统通过实时数据采集、分析和反馈&#xff0c;为企业提供了可靠的手段来确保生产环…

settings.json配置

settings.json配置 {"editor.tabSize": 2,"git.ignoreWindowsGit27Warning": true,"workbench.editor.untitled.hint": "hidden","security.workspace.trust.untrustedFiles": "open","[vue]": {"…

dll文件【C#】

加载方法&#xff1a; [DllImport("controlcan.dll")] public static extern UInt32 VCI_OpenDevice(UInt32 DeviceType, UInt32 DeviceInd, UInt32 Reserved); 文件存放位置&#xff1a; 一般放Debug文件夹下。 运行错误&#xff1a; 原因是CPU位数选择不对&…

不变式和橄榄树-UMLChina建模知识竞赛第4赛季第20轮

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 参考潘加宇在《软件方法》和UMLChina公众号文章中发表的内容作答。在本文下留言回答。 只要最先答对前3题&#xff0c;即可获得本轮优胜。第4题为附加题&#xff0c;对错不影响优胜者…

科普测量开关电源输出波形的三种方法及电源波形自动化测试步骤

开关电源波形测试就是对开关电源的输出波形进行检测和分析&#xff0c;观察开关电源参数变化&#xff0c;以此来判断开关电源的性能是否符合要求。好的开关电源对于设备以及整个电路的正常运行是非常重要的&#xff0c;因此开关电源输出波形测试是开关电源测试的重要环节&#…

数据同步工具调研选型:SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比

产品概述 Apache SeaTunnel 是一个非常易用的超高性能分布式数据集成产品&#xff0c;支持海量数据的离线及实时同步。每天可稳定高效同步万亿级数据&#xff0c;已应用于数百家企业生产&#xff0c;也是首个由国人主导贡献到 Apache 基金会的数据集成顶级项目。 SeaTunnel 主…

Flutter笔记 - 关于 fit 属性以及相关知识的总结

Flutter笔记 关于 fit 属性以及相关知识的总结 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/13434451…