2.6 Windows驱动开发:使用IO与DPC定时器

本章将继续探索驱动开发中的基础部分,定时器在内核中同样很常用,在内核中定时器可以使用两种,即IO定时器,以及DPC定时器,一般来说IO定时器是DDK中提供的一种,该定时器可以为间隔为N秒做定时,但如果要实现毫秒级别间隔,微秒级别间隔,就需要用到DPC定时器,如果是秒级定时其两者基本上无任何差异,本章将简单介绍IO/DPC这两种定时器的使用技巧。

首先来看IO定时器是如何使用的,IO定时器在使用上需要调用IoInitializeTimer函数对定时器进行初始化,但需要注意的是此函数每个设备对象只能调用一次,当初始化完成后用户可调用IoStartTimer让这个定时器运行,相反的调用IoStopTimer则用于关闭定时。

// 初始化定时器
NTSTATUS IoInitializeTimer([in]           PDEVICE_OBJECT         DeviceObject,  // 设备对象[in]           PIO_TIMER_ROUTINE      TimerRoutine,  // 回调例程[in, optional] __drv_aliasesMem PVOID Context        // 回调例程参数
);
// 启动定时器
VOID IoStartTimer([in] PDEVICE_OBJECT DeviceObject             // 设备对象
);
// 关闭定时器
VOID IoStopTimer([in] PDEVICE_OBJECT DeviceObject             // 设备对象
);

这里我们最关心的其实是IoInitializeTimer函数中的第二个参数TimerRoutine该参数用于传递一个自定义回调函数地址,其次由于定时器需要依附于一个设备,所以我们还需要调用IoCreateDevice创建一个新设备来让定时器线程使用,实现定时器代码如下所示。

#include <ntifs.h>
#include <wdm.h>
#include <ntstrsafe.h>LONG count = 0;// 自定义定时器函数
VOID MyTimerProcess( __in struct _DEVICE_OBJECT *DeviceObject, __in_opt PVOID Context)
{InterlockedIncrement(&count);DbgPrint("定时器计数 = %d", count);
}VOID UnDriver(PDRIVER_OBJECT driver)
{// 关闭定时器IoStopTimer(driver->DeviceObject);// 删除设备IoDeleteDevice(driver->DeviceObject);DbgPrint(("Uninstall Driver Is OK \n"));
}NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{DbgPrint("hello lyshark \n");NTSTATUS status = STATUS_UNSUCCESSFUL;// 定义设备名以及定时器UNICODE_STRING dev_name = RTL_CONSTANT_STRING(L"");PDEVICE_OBJECT dev;status = IoCreateDevice(Driver, 0, &dev_name, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, FALSE, &dev);if (!NT_SUCCESS(status)){return STATUS_UNSUCCESSFUL;}else{// 初始化定时器并开启IoInitializeTimer(dev, MyTimerProcess, NULL);IoStartTimer(dev);}Driver->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

编译并运行这段代码,那么系统会每隔1秒执行一次MyTimerProcess这个自定义函数。

那么如何让其每隔三秒执行一次呢,其实很简单,通过InterlockedDecrement函数实现递减(每次调用递减1)当计数器变为0时InterlockedCompareExchange会让其继续变为3,以此循环即可完成三秒输出一次的效果。

LONG count = 3;// 自定义定时器函数
VOID MyTimerProcess(__in struct _DEVICE_OBJECT *DeviceObject, __in_opt PVOID Context)
{// 递减计数InterlockedDecrement(&count);// 当计数减到0之后继续变为3LONG preCount = InterlockedCompareExchange(&count, 3, 0);//每隔3秒计数器一个循环输出如下信息if (preCount == 0){DbgPrint("[LyShark] 三秒过去了 \n");}
}

程序运行后,你会看到如下输出效果;

相比于IO定时器来说,DPC定时器则更加灵活,其可对任意间隔时间进行定时,DPC定时器内部使用定时器对象KTIMER,当对定时器设定一个时间间隔后,每隔这段时间操作系统会将一个DPC例程插入DPC队列。当操作系统读取DPC队列时,对应的DPC例程会被执行,此处所说的DPC例程同样表示回调函数。

DPC定时器中我们所需要使用的函数声明部分如下所示;

// 初始化定时器对象 PKTIMER 指向调用方为其提供存储的计时器对象的指针
void KeInitializeTimer([out] PKTIMER Timer    // 定时器指针
);// 初始化DPC对象
void KeInitializeDpc([out]          __drv_aliasesMem PRKDPC Dpc,[in]           PKDEFERRED_ROUTINE      DeferredRoutine,[in, optional] __drv_aliasesMem PVOID  DeferredContext
);// 设置定时器
BOOLEAN KeSetTimer([in, out]      PKTIMER       Timer,     // 定时器对象的指针[in]           LARGE_INTEGER DueTime,   // 时间间隔[in, optional] PKDPC         Dpc        // DPC对象
);// 取消定时器
BOOLEAN KeCancelTimer([in, out] PKTIMER unnamedParam1         // 定时器指针
);

注意;在调用KeSetTimer后,只会触发一次DPC例程。如果想周期的触发DPC例程,需要在DPC例程被触发后,再次调用KeSetTimer函数,应用DPC定时代码如下所示。

#include <ntifs.h>
#include <wdm.h>
#include <ntstrsafe.h>LONG count = 0;
KTIMER g_ktimer;
KDPC g_kdpc;// 自定义定时器函数
VOID MyTimerProcess(__in struct _KDPC *Dpc,__in_opt PVOID DeferredContext,__in_opt PVOID SystemArgument1,__in_opt PVOID SystemArgument2)
{LARGE_INTEGER la_dutime = { 0 };la_dutime.QuadPart = 1000 * 1000 * -10;// 递增计数器InterlockedIncrement(&count);DbgPrint("DPC 定时执行 = %d", count);// 再次设置定时KeSetTimer(&g_ktimer, la_dutime, &g_kdpc);
}VOID UnDriver(PDRIVER_OBJECT driver)
{// 取消计数器KeCancelTimer(&g_ktimer);DbgPrint(("Uninstall Driver Is OK \n"));
}NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{DbgPrint("hello lyshark \n");LARGE_INTEGER la_dutime = { 0 };// 每隔1秒执行一次la_dutime.QuadPart = 1000 * 1000 * -10;// 1.初始化定时器对象KeInitializeTimer(&g_ktimer);// 2.初始化DPC定时器KeInitializeDpc(&g_kdpc, MyTimerProcess, NULL);// 3.设置定时器,开始计时KeSetTimer(&g_ktimer, la_dutime, &g_kdpc);Driver->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

编译并运行这段程序,会发现其运行后的定时效果与IO定时器并无太大区别,但是DPC可以控制更精细,通过la_dutime.QuadPart = 1000 * 1000 * -10毫秒级别都可被控制。

最后扩展一个知识点,如何得到系统的当前详细时间,获得系统时间。在内核里通过KeQuerySystemTime获取的系统时间是标准时间(GMT+0),转换成本地时间还需使用RtlTimeToTimeFields函数将其转换为TIME_FIELDS结构体格式。

#include <ntifs.h>
#include <wdm.h>
#include <ntstrsafe.h>/*typedef struct TIME_FIELDS{CSHORT Year;CSHORT Month;CSHORT Day;CSHORT Hour;CSHORT Minute;CSHORT Second;CSHORT Milliseconds;CSHORT Weekday;} TIME_FIELDS;
*/// 内核中获取时间
VOID MyGetCurrentTime()
{LARGE_INTEGER CurrentTime;LARGE_INTEGER LocalTime;TIME_FIELDS   TimeFiled;// 得到格林威治时间KeQuerySystemTime(&CurrentTime);// 转成本地时间ExSystemTimeToLocalTime(&CurrentTime, &LocalTime);// 转换为TIME_FIELDS格式RtlTimeToTimeFields(&LocalTime, &TimeFiled);DbgPrint("[时间与日期] %4d年%2d月%2d日 %2d时%2d分%2d秒",TimeFiled.Year, TimeFiled.Month, TimeFiled.Day,TimeFiled.Hour, TimeFiled.Minute, TimeFiled.Second);
}VOID UnDriver(PDRIVER_OBJECT driver)
{DbgPrint(("Uninstall Driver Is OK \n"));
}NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{MyGetCurrentTime();DbgPrint("hello lyshark \n");Driver->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

运行后即可在内核中得到当前系统的具体时间;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/142811.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RedCap推动5G规模应用,紫光展锐赋能产业高质量发展

5G R17 RedCap作为面向中高速物联网场景的关键技术和解决方案&#xff0c;可以大幅降低终端的复杂度、成本和功耗。在当前国内5G应用规模化发展关键时期&#xff0c;5G R17 RedCap拥有广大的市场潜力与广泛的应用场景&#xff0c;将有助于推动5G规模应用、构建融通发展的5G生态…

【C++】join ()和detach ()函数详解和示例

简单的来说&#xff0c;join ()方法建立的线程具有阻碍作用&#xff0c;该线程不结束&#xff0c;另一些函数就无法运行。detach ()方法建立的线程&#xff0c;可以和另一些函数同时进行。下面以示例进行详细说明&#xff0c;以帮助大家理解和使用。 目录 join ()detach () jo…

PHP使用文件缓存实现html静态化

<?php // 动态生成的内容 $content "<html><body><h1>time:".date("Y-m-d H:i:s")."</h1></body></html>"; // 静态文件保存路径和文件名 $staticFilePath "file.html"; if(file_exists($s…

Ladybug 全景相机, 360°球形成像,带来全方位的视觉体验

360无死角全景照片总能给人带来强烈的视觉震撼&#xff0c;有着大片的既视感。那怎么才能拍出360球形照片呢&#xff1f;它的拍摄原理是通过图片某个点位为中心将图片其他部位螺旋式、旋转式处理&#xff0c;从而达到沉浸式体验的效果。俗话说“工欲善其事&#xff0c;必先利其…

java实现计数排序

图解 计数排序是一种线性时间复杂度的排序算法&#xff0c;它不基于比较排序&#xff0c;而是根据待排序序列中元素的值来进行排序。 具体的过程如下&#xff1a; 统计序列中每个元素出现的个数&#xff0c;得到一个计数数组count。其中&#xff0c;count[i]表示待排序序列中值…

AIGC:使用bert_vits2实现栩栩如生的个性化语音克隆

1 VITS2模型 1.1 摘要 单阶段文本到语音模型最近被积极研究&#xff0c;其结果优于两阶段管道系统。以往的单阶段模型虽然取得了较大的进展&#xff0c;但在间歇性非自然性、计算效率、对音素转换依赖性强等方面仍有改进的空间。本文提出VITS2&#xff0c;一种单阶段的文本到…

Xilinx Kintex7中端FPGA解码MIPI视频,基于MIPI CSI-2 RX Subsystem架构实现,提供工程源码和技术支持

目录 1、前言免责声明 2、我这里已有的 MIPI 编解码方案3、本 MIPI CSI2 模块性能及其优缺点4、详细设计方案设计原理框图OV5640及其配置权电阻硬件方案MIPI CSI-2 RX SubsystemSensor Demosaic图像格式转换Gammer LUT伽马校正VDMA图像缓存AXI4-Stream toVideo OutHDMI输出 5、…

Java安全架构 JCA、JCE、JSSE、JAAS

Java语言拥有三大特征&#xff1a;平台无关性、网络移动性和安全性&#xff0c;而Java安全体系结构对这三大特征提供了强大的支持和保证&#xff0c; Java安全体系结构总共分为4个部分&#xff1a; &#xff08;1&#xff09;JCA&#xff08; Java Cryptography Architecture…

工具及方法 - 手机扫条码工具: SCANDIT APP

一般扫个链接使用微信扫一扫即可。扫具体条码&#xff0c;可以在微信里搜索小程序&#xff0c;打开也能扫&#xff0c;得到条码内容。 还有其他方式&#xff0c;比如使用淘宝、百度等APP也可以直接扫码条码&#xff0c;还能得到更多的信息。 使用百度的话&#xff0c;不扫条码…

【洛谷算法题】P5711-闰年判断【入门2分支结构】

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5711-闰年判断【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格式&a…

诡异的bug之dlopen

序 本文给大家分享一个比较诡异的bug&#xff0c;是关于dlopen的&#xff0c;我大致罗列了我项目中使用代码方式及结构&#xff0c;更好的复现这个问题&#xff0c;也帮助大家进一步理解dlopen. 问题复现 以下是项目代码的文件结构&#xff1a; # tree . ├── file1 │ …

2023-11-15 LeetCode每日一题(K 个元素的最大和)

2023-11-15每日一题 一、题目编号 2656. K 个元素的最大和二、题目链接 点击跳转到题目位置 三、题目描述 给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。你需要执行以下操作 恰好 k 次&#xff0c;最大化你的得分&#xff1a; 从 nums 中选择一个元素 m 。将选中…

C语言从入门到精通之【概述】

#include指令和头文件 例如#include <stdio.h>&#xff0c;我们经常看到C文件最上面会有类似这样的语句&#xff0c;它的作用相当于把stdio.h文件中的所有内容都输入该行所在的位置。实际上&#xff0c;这是一种“拷贝-粘贴”的操作。 #include这行代码是一条C预处理器…

STM32中使用看门狗实现系统自动复位

STM32中的看门狗(Watchdog)是一种用于监控系统运行状态并在系统故障或死锁时执行自动复位的硬件功能。在本文中&#xff0c;我将介绍如何在STM32微控制器中使用看门狗来实现系统的自动复位。下面是详细的解释&#xff1a; 一、看门狗原理简介 看门狗是一种独立的硬件计时器&am…

DNA甲基化的相关知识

目录 1. DNA甲基化简介 2. 原理 3. 酶分类 4. DNA甲基化类型 5.机制 6. 十大DNA甲基化研究核心问题 6.1 植物中的甲基化 6.2 植物中DNA甲基化的主要功能 6.3 DNA甲基化作为生物标志物的潜力 6.4 DNA甲基化检测方法 1. DNA甲基化简介 DNA甲基化&#xff08;DNA methy…

MySQL MVCC机制详解

MySQL MVCC机制详解 MVCC, 是Multi Version Concurrency Control的缩写&#xff0c;其含义是多版本并发控制。这一概念的提出是为了使得MySQL可以实现RC隔离级别和RR隔离级别。 这里回顾一下MySQL的事务&#xff0c; MySQL的隔离级别和各种隔离级别所存在的问题。 事务是由 …

【大语言模型】Docker部署清华大学ChatGLM3教程

官方地址&#xff1a;https://github.com/THUDM/ChatGLM3 1 将代码保存至本地 方法1&#xff1a; git clone https://github.com/THUDM/ChatGLM3 方法2&#xff1a; https://github.com/THUDM/ChatGLM3/archive/refs/heads/main.zip 2 创建Docker文件 注&#xff1a;请先…

人工智能与新能源电动车的融合——技术创新引领未来交通革命

人工智能与新能源电动车的融合——技术创新引领未来交通革命 摘要&#xff1a;本文探讨了人工智能与新能源电动车领域的技术融合&#xff0c;分析了其在智能驾驶、电池技术、充电设施等方面的应用与创新。文章指出&#xff0c;这两大技术的结合将重塑交通产业&#xff0c;为我…

Unity之NetCode多人网络游戏联机对战教程(8)--玩家位置同步

文章目录 前言添加相机玩家添加对应组件服务端权威&#xff08;server authoritative&#xff09;客户端权威&#xff08;client authoritative&#xff09;服务端同步位置阅读与理解PlayerTransformSync.csNetworkVariableUploadTransformSyncTransform 后话 前言 承接上篇&a…

【MybatisPlus】条件构造器、自定义SQL、Service接口

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaEE 操作系统 Redis 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 MybatisPlus 一、条件构造器1.1 基于QueryW…