【rl-agents代码学习】02——DQN算法

文章目录

  • Highway-env Intersection
  • rl-agents之DQN
    • *Implemented variants*:
    • *References*:
    • Query agent for actions sequence
      • 探索策略
      • 神经网络实现
      • 小结1
    • Record the experience
      • Replaybuffer
      • compute_bellman_residual
      • step_optimizer
      • update_target_network
      • 小结2
    • exploration_policy
    • 运行结果

Highway-env Intersection

本文将继续探索rl-agents中相关DQN算法的实现。下面的介绍将会以intersection这个环境为例,首先介绍一下Highway-env中的intersection-v1。Highway-env中相关文档——http://highway-env.farama.org/environments/intersection/。

highway-env中的环境可以通过配置文件进行修改, observations, actions, dynamics 以及rewards等信息都是以字典的形式存储在配置文件中。

PS:DQN、DuelingDQN算法原理可参考【强化学习】10 —— DQN算法【强化学习】11 —— Double DQN算法与Dueling DQN算法

import gymnasium as gym
import pprint
from matplotlib import pyplot as pltenv = gym.make("intersection-v1", render_mode='rgb_array')
pprint.pprint(env.unwrapped.config)

输出config,可以看到如下信息:

{'action': {'dynamical': True,'lateral': True,'longitudinal': True,'steering_range': [-1.0471975511965976, 1.0471975511965976],'type': 'ContinuousAction'},'arrived_reward': 1,'centering_position': [0.5, 0.6],'collision_reward': -5,'controlled_vehicles': 1,'destination': 'o1','duration': 13,'high_speed_reward': 1,'initial_vehicle_count': 10,'manual_control': False,'normalize_reward': False,'observation': {'features': ['presence','x','y','vx','vy','long_off','lat_off','ang_off'],'type': 'Kinematics','vehicles_count': 5},'offroad_terminal': False,'offscreen_rendering': False,'other_vehicles_type': 'highway_env.vehicle.behavior.IDMVehicle','policy_frequency': 1,'real_time_rendering': False,'render_agent': True,'reward_speed_range': [7.0, 9.0],'scaling': 7.15,'screen_height': 600,'screen_width': 600,'show_trajectories': False,'simulation_frequency': 15,'spawn_probability': 0.6}

之后可以通过以下代码输出图像:

plt.imshow(env.render())
plt.show()

在这里插入图片描述
输出observation,可以看到是一个5*8的array,:

[[ 1.0000000e+00  9.9999998e-03  1.0000000e+00  0.0000000e+00-1.2500000e-01  6.3297665e+01  0.0000000e+00  0.0000000e+00][ 1.0000000e+00  1.3849856e-01 -1.0000000e+00 -9.9416278e-021.2500000e-01  8.1300293e+01  1.0361128e-15  0.0000000e+00][ 1.0000000e+00 -2.0000000e-02 -1.0000000e+00  0.0000000e+002.2993930e-01  6.5756187e+01  2.8473811e-15  0.0000000e+00][ 0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+000.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00][ 0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+000.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00]]

observation的解释如下,
在这里插入图片描述
通过以下代码,可以将action的类型变为离散的空间。

env.unwrapped.configure({"action": {'longitudinal': True,"type": "DiscreteMetaAction"}
})

rl-agents之DQN

A neural-network model is used to estimate the state-action value function and produce a greedy optimal policy.

Implemented variants:

  • Double DQN
  • Dueling architecture
  • N-step targets

References:

Playing Atari with Deep Reinforcement Learning, Mnih V. et al (2013).
Deep Reinforcement Learning with Double Q-learning, van Hasselt H. et al. (2015).
Dueling Network Architectures for Deep Reinforcement Learning, Wang Z. et al. (2015).

Query agent for actions sequence

由上一节所知,通过调用run_episodes函数,进行具体的agent训练。其中会调用step函数,并执行self.agent.plan(self.observation)。对于DQNAgent的实现,首先由AbstractAgent类实现plan,之后plan函数会调用act函数:

    def step(self):"""Plan a sequence of actions according to the agent policy, and step the environment accordingly."""# Query agent for actions sequenceactions = self.agent.plan(self.observation)
// rl_agents/agents/common/abstract.py
class AbstractAgent(Configurable, ABC):def __init__(self, config=None):super(AbstractAgent, self).__init__(config)self.writer = None  # Tensorboard writerself.directory = None  # Run directory@abstractmethoddef act(self, state):"""Pick an action:param state: s, the current state of the agent:return: a, the action to perform"""raise NotImplementedError()def plan(self, state):"""Plan an optimal trajectory from an initial state.:param state: s, the initial state of the agent:return: [a0, a1, a2...], a sequence of actions to perform"""return [self.act(state)]

DQN抽象类AbstractDQNAgent继承自AbstractStochasticAgentAbstractStochasticAgent继承自AbstractAgent,在DQN抽象类AbstractDQNAgent中实现对act函数的重写:

    def act(self, state, step_exploration_time=True):"""Act according to the state-action value model and an exploration policy:param state: current state:param step_exploration_time: step the exploration schedule:return: an action"""self.previous_state = stateif step_exploration_time:self.exploration_policy.step_time()# Handle multi-agent observations# TODO: it would be more efficient to forward a batch of statesif isinstance(state, tuple):return tuple(self.act(agent_state, step_exploration_time=False) for agent_state in state)# Single-agent settingvalues = self.get_state_action_values(state)self.exploration_policy.update(values)return self.exploration_policy.sample()

探索策略

首先来看一下exploration_policy 的实现:

        self.exploration_policy = exploration_factory(self.config["exploration"], self.env.action_space)

探索策略加载的配置文件部分:

"exploration": {"method": "EpsilonGreedy","tau": 15000,"temperature": 1.0,"final_temperature": 0.05
}

跳转到exploration_factory,可以看到主要实现了三类探索策略,具体的内容会在后面部分进行介绍:

  • Greedy
  • ϵ \epsilon ϵ-Greedy
  • Boltzmann
def exploration_factory(exploration_config, action_space):"""Handles creation of exploration policies:param exploration_config: configuration dictionary of the policy, must contain a "method" key:param action_space: the environment action space:return: a new exploration policy"""from rl_agents.agents.common.exploration.boltzmann import Boltzmannfrom rl_agents.agents.common.exploration.epsilon_greedy import EpsilonGreedyfrom rl_agents.agents.common.exploration.greedy import Greedyif exploration_config['method'] == 'Greedy':return Greedy(action_space, exploration_config)elif exploration_config['method'] == 'EpsilonGreedy':return EpsilonGreedy(action_space, exploration_config)elif exploration_config['method'] == 'Boltzmann':return Boltzmann(action_space, exploration_config)else:raise ValueError("Unknown exploration method")

神经网络实现

接着获取 Q ( s , a ) Q(s,a) Q(s,a)

    def get_state_action_values(self, state):""":param state: s, an environment state:return: [Q(a1,s), ..., Q(an,s)] the array of its action-values for each actions"""return self.get_batch_state_action_values([state])[0]

调用了抽象方法get_batch_state_action_values

    @abstractmethoddef get_batch_state_action_values(self, states):"""Get the state-action values of several states:param states: [s1; ...; sN] an array of states:return: values:[[Q11, ..., Q1n]; ...] the array of all action values for each state"""raise NotImplementedError

接着来看DQNAgent中的具体实现:

class DQNAgent(AbstractDQNAgent):def __init__(self, env, config=None):super(DQNAgent, self).__init__(env, config)size_model_config(self.env, self.config["model"])self.value_net = model_factory(self.config["model"])self.target_net = model_factory(self.config["model"])self.target_net.load_state_dict(self.value_net.state_dict())self.target_net.eval()logger.debug("Number of trainable parameters: {}".format(trainable_parameters(self.value_net)))self.device = choose_device(self.config["device"])self.value_net.to(self.device)self.target_net.to(self.device)self.loss_function = loss_function_factory(self.config["loss_function"])self.optimizer = optimizer_factory(self.config["optimizer"]["type"],self.value_net.parameters(),**self.config["optimizer"])self.steps = 0def get_batch_state_action_values(self, states):return self.value_net(torch.tensor(states, dtype=torch.float).to(self.device)).data.cpu().numpy()

value_net的实现依赖于model_factory,其中的配置文件部分如下:

    "model": {"type": "MultiLayerPerceptron","layers": [128, 128]},

再进入model_factory,主要实现了四类网络:

  • MultiLayerPerceptron
  • DuelingNetwork
  • ConvolutionalNetwork
  • EgoAttentionNetwork

这里我们暂且先分析多层感知机MultiLayerPerceptron(即普通DQN)。

// rl_agents/agents/common/models.py
def model_factory(config: dict) -> nn.Module:if config["type"] == "MultiLayerPerceptron":return MultiLayerPerceptron(config)elif config["type"] == "DuelingNetwork":return DuelingNetwork(config)elif config["type"] == "ConvolutionalNetwork":return ConvolutionalNetwork(config)elif config["type"] == "EgoAttentionNetwork":return EgoAttentionNetwork(config)else:raise ValueError("Unknown model type")

MultiLayerPerceptron类继承自BaseModuleBaseModule继承自torch.nn.Module。根据配置文件baseline.json,可以看到MultiLayerPerceptron类的sizes为[128, 128],激活函数为RELU。我们可以注意到,网络实现中有reshape操作,因为state的输入是5*8的矩阵,通过reshape,可以将其转换为一维的向量。最终网络结构类似于下图。

在这里插入图片描述

class MultiLayerPerceptron(BaseModule, Configurable):def __init__(self, config):super().__init__()Configurable.__init__(self, config)sizes = [self.config["in"]] + self.config["layers"] self.activation = activation_factory(self.config["activation"])layers_list = [nn.Linear(sizes[i], sizes[i + 1]) for i in range(len(sizes) - 1)]self.layers = nn.ModuleList(layers_list)if self.config.get("out", None):self.predict = nn.Linear(sizes[-1], self.config["out"])@classmethoddef default_config(cls):return {"in": None,"layers": [64, 64],"activation": "RELU","reshape": "True","out": None}def forward(self, x):if self.config["reshape"]:x = x.reshape(x.shape[0], -1)  # We expect a batch of vectorsfor layer in self.layers:x = self.activation(layer(x))if self.config.get("out", None):x = self.predict(x)return x

获取 Q Q Q之后,探索策略进行更新,并sample一个action。以 ϵ \epsilon ϵ-Greedy为例,因为 ϵ \epsilon ϵ-Greedy继承DiscreteDistribution,所以主要关注DiscreteDistribution中的相关实现。

    def act(self, state, step_exploration_time=True):...self.exploration_policy.update(values)return self.exploration_policy.sample()
rl_agents/agents/common/exploration/epsilon_greedy.pydef update(self, values):"""Update the action distribution parameters:param values: the state-action values:param step_time: whether to update epsilon schedule"""self.optimal_action = np.argmax(values)self.epsilon = self.config['final_temperature'] + \(self.config['temperature'] - self.config['final_temperature']) * \np.exp(- self.time / self.config['tau'])if self.writer:self.writer.add_scalar('exploration/epsilon', self.epsilon, self.time)
class DiscreteDistribution(Configurable, ABC):def __init__(self, config=None, **kwargs):super(DiscreteDistribution, self).__init__(config)self.np_random = None@abstractmethoddef get_distribution(self):""":return: a distribution over actions {action:probability}"""raise NotImplementedError()def sample(self):""":return: an action sampled from the distribution"""distribution = self.get_distribution()return self.np_random.choice(list(distribution.keys()), 1, p=np.array(list(distribution.values())))[0]

可以看到首先需要获得action的一个分布,这部分在 ϵ \epsilon ϵ-Greedy中的实现为:

    def get_distribution(self):distribution = {action: self.epsilon / self.action_space.n for action in range(self.action_space.n)}distribution[self.optimal_action] += 1 - self.epsilonreturn distribution

get_distribution 函数返回一个动作的概率分布字典。字典的键是动作,字典的值是动作被选择的概率。概率分布的计算方式为:每个动作都有一个基础概率 self.epsilon / self.action_space.n,其中 self.action_space.n 是动作的总数,即每个动作被选择的概率相等,这是基于探索的角度。同时,最优动作 self.optimal_action 会额外获得一个概率增量 1 - self.epsilon,这是基于利用的角度,即利用已知的最优动作。

sample 函数根据 get_distribution 函数得到的动作概率分布进行采样,返回一个动作。具体地,使用 np_random.choice 函数,其参数包括动作列表和对应的动作概率分布列表,返回的是一个根据给定概率分布随机采样的动作。

小结1

到此,act函数返回一个待执行的action,此部分的框图如下所示:

在这里插入图片描述
之后这几步在上一讲已经讨论过http://t.csdnimg.cn/ddpVJ。

        # Forward the actions to the environment viewertry:self.env.unwrapped.viewer.set_agent_action_sequence(actions)except AttributeError:pass# Step the environmentprevious_observation, action = self.observation, actions[0]transition = self.wrapped_env.step(action)self.observation, reward, done, truncated, info = transitionterminal = done or truncated# Call callbackif self.step_callback_fn is not None:self.step_callback_fn(self.episode, self.wrapped_env, self.agent, transition, self.writer)

Record the experience

现在step函数中只剩下这一步,我们再来看这一步的实现。

        # Record the experience.try:self.agent.record(previous_observation, action, reward, self.observation, done, info)except NotImplementedError:pass

直接跳转到AbstractDQNAgent类中查看相关实现

    def record(self, state, action, reward, next_state, done, info):"""Record a transition by performing a Deep Q-Network iteration- push the transition into memory- sample a minibatch- compute the bellman residual loss over the minibatch- perform one gradient descent step- slowly track the policy network with the target network:param state: a state:param action: an action:param reward: a reward:param next_state: a next state:param done: whether state is terminal"""if not self.training:returnif isinstance(state, tuple) and isinstance(action, tuple):  # Multi-agent setting[self.memory.push(agent_state, agent_action, reward, agent_next_state, done, info)for agent_state, agent_action, agent_next_state in zip(state, action, next_state)]else:  # Single-agent settingself.memory.push(state, action, reward, next_state, done, info)batch = self.sample_minibatch()if batch:loss, _, _ = self.compute_bellman_residual(batch)self.step_optimizer(loss)self.update_target_network()

Replaybuffer

self.memory是Replaybuffer的一个实现

  self.memory = ReplayMemory(self.config)
  • push函数的实现可以提升运算速率。
  • 在强化学习中,经常需要从经验回放缓存(这里就是self.memory)中抽样出一批数据来更新模型。而这里的n-step是一个常用的技巧,它表明在预测下一个状态时,不仅仅使用当前的状态和动作,还使用接下来的n-1个状态和动作。当n为1时,这就是常见的单步过渡;当n大于1时,这就是n步采样。
rl_agents/agents/common/memory.py
class ReplayMemory(Configurable):"""Container that stores and samples transitions."""def __init__(self, config=None, transition_type=Transition):super(ReplayMemory, self).__init__(config)self.capacity = int(self.config['memory_capacity'])self.transition_type = transition_typeself.memory = []self.position = 0@classmethoddef default_config(cls):return dict(memory_capacity=10000,n_steps=1,gamma=0.99)def push(self, *args):"""Saves a transition."""if len(self.memory) < self.capacity:self.memory.append(None)self.position = len(self.memory) - 1elif len(self.memory) > self.capacity:self.memory = self.memory[:self.capacity]# Faster than append and popself.memory[self.position] = self.transition_type(*args)self.position = (self.position + 1) % self.capacitydef sample(self, batch_size, collapsed=True):"""Sample a batch of transitions.If n_steps is greater than one, the batch will be composed of lists of successive transitions.:param batch_size: size of the batch:param collapsed: whether successive transitions must be collapsed into one n-step transition.:return: the sampled batch"""# TODO: use agent's np_random for seedingif self.config["n_steps"] == 1:# Directly sample transitionsreturn random.sample(self.memory, batch_size)else:# Sample initial transition indexesindexes = random.sample(range(len(self.memory)), batch_size)# Get the batch of n-consecutive-transitions starting from sampled indexesall_transitions = [self.memory[i:i+self.config["n_steps"]] for i in indexes]# Collapse transitionsreturn map(self.collapse_n_steps, all_transitions) if collapsed else all_transitionsdef collapse_n_steps(self, transitions):"""Collapse n transitions <s,a,r,s',t> of a trajectory into one transition <s0, a0, Sum(r_i), sp, tp>.We start from the initial state, perform the first action, and then the return estimate is formed byaccumulating the discounted rewards along the trajectory until a terminal state or the end of thetrajectory is reached.:param transitions: A list of n successive transitions:return: The corresponding n-step transition"""state, action, cumulated_reward, next_state, done, info = transitions[0]discount = 1for transition in transitions[1:]:if done:breakelse:_, _, reward, next_state, done, info = transitiondiscount *= self.config['gamma']cumulated_reward += discount*rewardreturn state, action, cumulated_reward, next_state, done, infodef __len__(self):return len(self.memory)def is_full(self):return len(self.memory) == self.capacitydef is_empty(self):return len(self.memory) == 0

回到record代码中,首先将采样到的数据放入Replaybuffer,当采样数据量大于batch_size时,从Replaybuffer中采样。

    def sample_minibatch(self):if len(self.memory) < self.config["batch_size"]:return Nonetransitions = self.memory.sample(self.config["batch_size"])return Transition(*zip(*transitions))

compute_bellman_residual

之后便利用bellman方程进行更新:

loss, _, _ = self.compute_bellman_residual(batch)
    def compute_bellman_residual(self, batch, target_state_action_value=None):# Compute concatenate the batch elementsif not isinstance(batch.state, torch.Tensor):# logger.info("Casting the batch to torch.tensor")state = torch.cat(tuple(torch.tensor([batch.state], dtype=torch.float))).to(self.device)action = torch.tensor(batch.action, dtype=torch.long).to(self.device)reward = torch.tensor(batch.reward, dtype=torch.float).to(self.device)next_state = torch.cat(tuple(torch.tensor([batch.next_state], dtype=torch.float))).to(self.device)terminal = torch.tensor(batch.terminal, dtype=torch.bool).to(self.device)batch = Transition(state, action, reward, next_state, terminal, batch.info)# Compute Q(s_t, a) - the model computes Q(s_t), then we select the# columns of actions takenstate_action_values = self.value_net(batch.state)state_action_values = state_action_values.gather(1, batch.action.unsqueeze(1)).squeeze(1)if target_state_action_value is None:with torch.no_grad():# Compute V(s_{t+1}) for all next states.next_state_values = torch.zeros(batch.reward.shape).to(self.device)if self.config["double"]:# Double Q-learning: pick best actions from policy network_, best_actions = self.value_net(batch.next_state).max(1)# Double Q-learning: estimate action values from target networkbest_values = self.target_net(batch.next_state).gather(1, best_actions.unsqueeze(1)).squeeze(1)else:best_values, _ = self.target_net(batch.next_state).max(1)next_state_values[~batch.terminal] = best_values[~batch.terminal]# Compute the expected Q valuestarget_state_action_value = batch.reward + self.config["gamma"] * next_state_values# Compute lossloss = self.loss_function(state_action_values, target_state_action_value)return loss, target_state_action_value, batch
  • with torch.no_grad():用于禁止在其作用域内进行梯度计算
  • 实现了DoubleDQN
  • self.loss_function = loss_function_factory(self.config["loss_function"])loss函数包括以下几种:
def loss_function_factory(loss_function):if loss_function == "l2":return F.mse_losselif loss_function == "l1":return F.l1_losselif loss_function == "smooth_l1":return F.smooth_l1_losselif loss_function == "bce":return F.binary_cross_entropyelse:raise ValueError("Unknown loss function : {}".format(loss_function))

step_optimizer

对梯度进行了截断

    def step_optimizer(self, loss):# Optimize the modelself.optimizer.zero_grad()loss.backward()for param in self.value_net.parameters():param.grad.data.clamp_(-1, 1)self.optimizer.step()

update_target_network

更新目标网络

    def update_target_network(self):self.steps += 1if self.steps % self.config["target_update"] == 0:self.target_net.load_state_dict(self.value_net.state_dict())

小结2

到此,整个DQN算法实现完毕,record部分的框图如下:

在这里插入图片描述

exploration_policy

这部分主要实现了三种策略:

  • Greedy
  • ϵ \epsilon ϵ-Greedy
  • Boltzmann

此部分可以参考:【强化学习】02—— 探索与利用

Greedy

Greedy贪婪策略即选择最优的策略 a t = arg max ⁡ a ∈ A Q ( s , a ) a_t=\argmax_{a\in\mathcal{A}}Q(s,a) at=argmaxaAQ(s,a)

class Greedy(DiscreteDistribution):"""Always use the optimal action"""def __init__(self, action_space, config=None):super(Greedy, self).__init__(config)self.action_space = action_spaceif isinstance(self.action_space, spaces.Tuple):self.action_space = self.action_space.spaces[0]if not isinstance(self.action_space, spaces.Discrete):raise TypeError("The action space should be discrete")self.values = Noneself.seed()def get_distribution(self):optimal_action = np.argmax(self.values)return {action: 1 if action == optimal_action else 0 for action in range(self.action_space.n)}def update(self, values):self.values = values

ϵ \epsilon ϵ-Greedy

ϵ \epsilon ϵ-Greedy公式如下:
a t = { arg ⁡ max ⁡ a ∈ A Q ^ ( a ) , 采样概率:1- ϵ 从  A 中随机选择 , 采样概率:  ϵ a_t=\begin{cases}\arg\max_{a\in\mathcal{A}}\hat{Q}(a),&\text{采样概率:1-}\epsilon\\\text{从 }\mathcal{A}\text{ 中随机选择},&\text{采样概率: }\epsilon&\end{cases} at={argmaxaAQ^(a), A 中随机选择,采样概率:1-ϵ采样概率ϵ
这里实现的其实是衰减贪心策略,衰减曲线如下图所示。
ϵ = final-temperature + ( temperature − final-temperature ) ∗ e − t τ \begin{aligned}\epsilon &= \text{final-temperature}+(\text{temperature}-\text{final-temperature})*e^{\frac{-t}{\tau}}\end{aligned} ϵ=final-temperature+(temperaturefinal-temperature)eτt
在这里插入图片描述

class EpsilonGreedy(DiscreteDistribution):"""Uniform distribution with probability epsilon, and optimal action with probability 1-epsilon"""def __init__(self, action_space, config=None):super(EpsilonGreedy, self).__init__(config)self.action_space = action_spaceif isinstance(self.action_space, spaces.Tuple):self.action_space = self.action_space.spaces[0]if not isinstance(self.action_space, spaces.Discrete):raise TypeError("The action space should be discrete")self.config['final_temperature'] = min(self.config['temperature'], self.config['final_temperature'])self.optimal_action = Noneself.epsilon = 0self.time = 0self.writer = Noneself.seed()@classmethoddef default_config(cls):return dict(temperature=1.0,final_temperature=0.1,tau=5000)def get_distribution(self):distribution = {action: self.epsilon / self.action_space.n for action in range(self.action_space.n)}distribution[self.optimal_action] += 1 - self.epsilonreturn distributiondef update(self, values):"""Update the action distribution parameters:param values: the state-action values:param step_time: whether to update epsilon schedule"""self.optimal_action = np.argmax(values)self.epsilon = self.config['final_temperature'] + \(self.config['temperature'] - self.config['final_temperature']) * \np.exp(- self.time / self.config['tau'])if self.writer:self.writer.add_scalar('exploration/epsilon', self.epsilon, self.time)def step_time(self):self.time += 1def set_time(self, time):self.time = timedef set_writer(self, writer):self.writer = writer

Boltzmann

玻尔兹曼分布(Boltzmann Distribution)是描述分子在热力学平衡时分布的概率分布函数。它表明在给定的能量状态下,不同的微观状态出现的概率是不同的,且符合一个指数函数形式。

在热力学中,任何物质在一定温度下都会具有一定的热运动,这些热运动状态可以用分子内能或动能来描述。而玻尔兹曼分布表明了在相同温度下,分子在所有可能状态之间的分布概率。其表达式为:

P ( E i ) = e − E i / k T ∑ j e − E j / k T P(E_i) = \frac{e^{-E_i/kT}}{\sum_{j} e^{-E_j/kT}} P(Ei)=jeEj/kTeEi/kT

其中, P ( E i ) P(E_i) P(Ei)为分子处于能量状态 E i E_i Ei的概率, k k k为玻尔兹曼常数, T T T为温度, E j E_j Ej为所有可以达到的能量状态。

可以看到,玻尔兹曼分布中每个能量状态的出现概率与其能量成负指数关系,因此能量较小的状态出现的概率更大。这符合熵增加的趋势,即越有序的状态出现的概率越小。

class Boltzmann(DiscreteDistribution):"""Uniform distribution with probability epsilon, and optimal action with probability 1-epsilon"""def __init__(self, action_space, config=None):super(Boltzmann, self).__init__(config)self.action_space = action_spaceif not isinstance(self.action_space, spaces.Discrete):raise TypeError("The action space should be discrete")self.values = Noneself.seed()@classmethoddef default_config(cls):return dict(temperature=0.5)def get_distribution(self):actions = range(self.action_space.n)if self.config['temperature'] > 0:weights = np.exp(self.values / self.config['temperature'])else:weights = np.zeros((len(actions),))weights[np.argmax(self.values)] = 1return {action: weights[action] / np.sum(weights) for action in actions}def update(self, values):self.values = values

运行结果

运行命令与方法在上一讲已经介绍【rl-agents代码学习】01——总体框架。

超参数设置采用默认设置,使用DQN算法分别运行4000steps和20000steps。使用Tensorboard查看结果:

 tensorboard --logdir C:\Users\16413\Desktop\rl-agents-master\scripts\out\IntersectionEnv\DQNAgent\baseline_20231113-123234_7944\

4000steps
在这里插入图片描述
在这里插入图片描述
可以看到最后的episode reward大致在3左右。

20000steps
在这里插入图片描述
可以看到最后的episode reward大致在3左右。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/142211.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线性代数(四)| 解方程 齐次性 非齐次性 扩充问题

文章目录 1 方程解的个数2 解方程步骤2.1 齐次性方程组2.2 非齐次方程组 3 一些扩充问题 系数矩阵 增广矩阵 A m n X B A_{mn}XB Amn​XB 1 方程解的个数 m 代表有m个方程 n代表有n个未知数 系数矩阵的秩与增广矩阵的秩不同 无解 若相同 &#xff0c;如系数矩阵的秩和未知…

数据结构前言(空间复杂度)

1.空间复杂度 空间复杂度也是一个数学表达式&#xff0c;是对一个算法在运行过程中临时占用存储空间大小的量度 。 空间复杂度不是程序占用了多少bytes的空间&#xff0c;因为这个也没太大意义&#xff0c;所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂…

基于闪电搜索算法优化概率神经网络PNN的分类预测 - 附代码

基于闪电搜索算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于闪电搜索算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于闪电搜索优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

同为科技(TOWE)主副控智能自动断电桌面PDU插排

在这个快节奏的现代社会&#xff0c;我们越来越需要智能化的产品来帮助我们提高生活质量和工作效率&#xff0c;同时&#xff0c;为各种家用电器及电子设备充电成为不少消费者新的痛点。桌面插排如何高效、安全地管理这些设备&#xff0c;成为了一个亟待解决的问题。同为科技&a…

竞赛选题 深度学习的水果识别 opencv python

文章目录 0 前言2 开发简介3 识别原理3.1 传统图像识别原理3.2 深度学习水果识别 4 数据集5 部分关键代码5.1 处理训练集的数据结构5.2 模型网络结构5.3 训练模型 6 识别效果7 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习…

SAP:解决函数CONNE_IMPORT_WRONG_COMP_DECS CX_SY_IMPORT_MISMATCH_ERROR错误

用户反馈报表中取数异常&#xff0c;经检查发现SE37执行取数函数ZLY_R_CWFX03报以下错误。 Category ABAP Programming Error Runtime Errors CONNE_IMPORT_WRONG_COMP_DECS Except. CX_SY_IMPORT_MISMATCH_ERROR ABAP Program ZLY_R_CWFX03FT Application Component Not Assig…

【论文阅读】CTAB-GAN: Effective Table Data Synthesizing

论文地址&#xff1a;[2102.08369] CTAB-GAN: Effective Table Data Synthesizing (arxiv.org) 介绍 虽然数据共享对于知识发展至关重要&#xff0c;但遗憾的是&#xff0c;隐私问题和严格的监管&#xff08;例如欧洲通用数据保护条例 GDPR&#xff09;限制了其充分发挥作用。…

“苹果定律”失效,2023是VR的劫点还是拐点?

因为Pico裁员的事情&#xff0c;VR行业又被讨论了。 Pico于2021年9月被字节跳动收购&#xff0c;当时是出货量排名全球第三的VR 头显生产商。 此前曾有国际机构预测&#xff0c;2023年随着Meta和Pico的硬件更新&#xff0c;苹果Vision Pro的推出&#xff0c;三星电子重新回归VR…

Java学习之路 —— Day3(内部类、枚举、泛型、API)

文章目录 1. 内部类2. 枚举3. 泛型 1. 内部类 成员内部类 就是类中的一个普通成员&#xff0c;类似普通的成员方法、成员变量。&#xff08;套娃&#xff09; public class Outer {public class Inner {private String name;public static String school;public String getNa…

map\set封装

目录 1. set和map的底层结构1.1 红黑树1.2 set1.3 map 2. 模拟实现2.1 红黑树2.1 map和set以及仿函数2.3 迭代器2.3.1 const迭代器 2.3 set和map封装 1. set和map的底层结构 1.1 红黑树 这两个容器底层都是对红黑树的封装&#xff0c;因此需要先看一下红黑树结构部分的底层源…

4.0 Linux进程前导知识

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 冯.诺依曼体系 CPU&#xff1a;运算器&#xff0c;控制器 输入设备&#xff1a;键盘&#xff0c;麦克风&#xff0c;摄像头&#xff0c;鼠标&#xff0c;网卡&#xff0c;磁盘等。 输出设备&#xff1a;显示器&#xff0…

都快2024年了,别只使用React,需要学习一下Vue,不然没出路了

最近&#xff0c;我的朋友因为不熟悉 Vue.js 而未能通过面试。 她平时工作中大部分时间都在使用React&#xff0c;所以也懒得去了解其他前端框架。 世界上所有的前端框架我们都应该熟悉吗&#xff1f; 不&#xff0c;这是极其不合理的。 但为了生存&#xff0c;朋友还是要学…

2023数字科技生态展,移远通信解锁新成就

11月10日&#xff0c;以“数字科技&#xff0c;焕新启航”为主题的中国电信2023数字科技生态大会暨2023数字科技生态展在广州盛大启幕。作为物联网行业的龙头标杆&#xff0c;同时更与中国电信连续多年维持稳定友好的合作关系&#xff0c;移远通信受邀参加本次展会。 在本次展会…

使用xlwings实现对excel表中指定列隔行求和

需要对上表中的营业额隔行求和&#xff0c;即橙色背景颜色的求和&#xff0c;无背景颜色的求和。 看了大佬的视频&#xff0c;有两种方法&#xff1a; 1.加辅助列 2.使用判断行的奇偶函数&#xff0c;然后在用sumproduct函数 在此&#xff0c;我使用xlwings对excel表中数据…

Java编程--单例模式(饿汉模式/懒汉模式)/阻塞队列

前言 逆水行舟&#xff0c;不进则退&#xff01;&#xff01;&#xff01; 目录 单例模式 饿汉模式&#xff1a; 懒汉模式&#xff1a; 什么是阻塞队列 什么是高内聚 低耦合 阻塞队列的实现 单例模式 单例模式&#xff08;Singleton Pattern&#xff09;是一种常见…

WorldView 1 2 3 4卫星影像

WorldView WorldView卫星是Digitalglobe公司的商业成像卫星系统。它由两颗(WorldView-I和WorldView-II)卫星组成。 WorldView-1 WorldView-1卫星为美国DigitalGlobe公司的高分辨率商用卫星&#xff0c;于2007年9月18日成功发射&#xff0c;可提供0.5m分辨率卫星影像。灵活的…

设计模式之适配器(Adapter)

Adapter Wapper 接口转换器 如果一个类不能直接访问另一个类的时候&#xff0c;中间加一个Adapter转换器就能访问了 常见例子: 电压转接头 java.io jdbc-odbc bridge(不是桥接模式) ASM Transformer java io里面的读文件操作: FileInputStream是字节流读文件&#xff0c;就像…

2023-2024-2 高级语言程序设计-二维数组

7-1 矩阵运算 给定一个nn的方阵&#xff0c;本题要求计算该矩阵除副对角线、最后一列和最后一行以外的所有元素之和。副对角线为从矩阵的右上角至左下角的连线。 输入格式: 输入第一行给出正整数n&#xff08;1<n≤10&#xff09;&#xff1b;随后n行&#xff0c;每行给出…

深入理解Kafka3.6.0的核心概念,搭建与使用

Kafka是最初由Linkedin公司开发&#xff0c;是一个分布式、支持分区的&#xff08;partition&#xff09;、多副本的&#xff08;replica&#xff09;&#xff0c;基于zookeeper协调的分布式消息系统&#xff0c;它的最大的特性就是可以实时的处理大量数据以满足各种需求场景&a…

桌面便签软件用哪个?10款全球好用的便签软件推荐,告别杂论无章!

在如今的快节奏社会中&#xff0c;我们的生活和工作节奏越来越快&#xff0c;每天面对的信息成倍地增长。有时候&#xff0c;我们需要随手记下一些重要的事情&#xff0c;或者是一些突然的灵感&#xff0c;这时候就需要一款好用的桌面便签软件。 桌面便签软件可以帮助我们更好…