【matlab】KMeans KMeans++实现手写数字聚类

目录

matlab代码kmeans

matlab代码kmeans++


 MNIST DATABASE下载网址: http://yann.lecun.com/exdb/mnist/

聚类

将物理或抽象对象的集合分成由类似特征组成的多个类的过程称为聚类(clustering)。

对于给定N个n维向量x1,…,xN∈Rn,聚类的目标就是将这N个n维向量分成k个集合,尽量使得同一个集合中的向量彼此接近,如图2所示。

图2 聚类示意效果图

K-means聚类算法迭代过程

首先初始化聚类中心,如图3所示。

图3 k-means初始聚类中心

然后计算每个点到k个聚类中心的聚类,并将其分配到最近的聚类中心所在的聚类中,重新计算每个聚类现在的质心,并以其作为新的聚类中心,如图4所示。

图4 k-means迭代1次

重复迭代,直到达到给定的迭代次数或k个聚类中心的变化值小于某个阈值,形成最终的聚类结果,如图5所示。

图5 k-means最终聚类效果

K均值聚类算法的复杂度分析

初始化:选择K个初始聚类中心。这个步骤的时间复杂度为O(K)。

分配:对每个样本点,计算其与每个聚类中心的距离,并将其分配到距离最近的聚类中心所代表的簇。这个步骤的时间复杂度为O(N * K * d),其中N是样本数,d是特征数。

更新:对每个簇,计算其所有样本点的平均值作为新的聚类中心。这个步骤的时间复杂度为O(N * K * d)。

重复执行第2和第3步,直到满足停止条件,例如达到最大迭代次数或聚类中心变化小于一定阈值。

因此,K均值聚类算法的总体时间复杂度主要由分配和更新两个步骤决定,为O(T * N * K * d),其中T是迭代次数。

K-means手写数字聚类

kmeas聚类算法对train_images.mat的前100张和前1000张手写数字图像进行聚类,重复测试10次,每次测试的正确率如图6所示,其中100张的平均正确率为59%,最高正确率为66%,平均运行时间为0.1秒,1000张的平均正确率为55%,最高正确率为62%,平均运行时间为3.6秒。

图6 K-means聚类结果

train_images.mat的前100张、500张、1000张、2000张和4000张手写数字图像进行聚类,每种图像张数重复测试10次,计算平均正确率和平均运行时间,结果如表1所示。

表1 K-means聚类测试

由表1可知,K-means手写数字聚类在图像数目达到4000张的时候,运行时间达到了41秒,而且平均正确率为60%左右。

K-means性能分析

由结果可以很明显地看出,K-means聚类应用在手写数字上的效果并不是很好,平均正确率只有60%左右,其中有几个原因。一是K-means假设各个簇的大小、形状和密度相似,如果数据集中的簇具有类似的分布特征,K-means能够产生较好的聚类结果,而手写数字数据集的数字并不是均匀分布的,不同的数字可能出现频率不同,而且手写数字的形状有的区别不大;二是K-means在处理高维数据时可能会遇到困难,因为高维空间下的距离计算和聚类结果评估会变得复杂,而实验中手写数字的维度达到了784。

K-means++

K-means聚类算法的一大缺点是初始类别中心的选择对聚类迭代的次数影响很大,而K-means++是想通过选择更好初始类别中心来减少K-means聚类的迭代次数。

那么什么样的初始类别中心是更好的呢?

好的初始类别中心应该能够均匀地覆盖整个数据空间,能够代表数据集中的不同特征。

K-means++算法流程

  • 从数据点中随机选择一个点作为第一个聚类中心。
  • 对于每个数据点,计算它与当前已选择的聚类中心的距离,选择与已选择的聚类中心距离最大的数据点作为下一个聚类中心。
  • 重复步骤②,直到选择出k个初始聚类中心。

K-means++手写数字聚类

kmeas++聚类算法对train_images.mat的前100张和前1000张手写数字图像进行聚类,重复测试10次,每次测试的正确率如图7所示,其中100张的平均正确率为58%,最高正确率达到了63%,平均运行时间为0.03秒,1000张的平均正确率为57%,最高正确率为61%,平均运行时间为0.76秒。

图7 K-means++聚类结果

我们再train_images.mat的前100张、1000张、2000张、4000张和8000张手写数字图像进行聚类,每种图像张数重复测试10次,计算平均正确率和平均运行时间,结果如表2所示。

表2 K-means聚类测试

由表2可知,K-means手写数字聚类在图像数目达到8000张的时候,运行时间达到了15秒,而且平均正确率均高于50%。

K-means++性能分析

由结果可以很明显地看出,相比K-means的聚类结果,K-means++的正确率差别不大,基本上也是在60%左右,但是程序运行时间极大的减少了,这说明K-means++的优化,即选择更好的初始类别中心,可以大大的减少算法迭代的过程,迅速聚类。

但是由于K-means++只是为K-means聚类选择更好的初始化中心,这只是减少了聚类的迭代次数,并不能解决K-means聚类手写数字效果不好的问题。

matlab代码kmeans

clc,clear;
load ./train_images.mat;
load ./train_labels.mat;
k=10;
dimension=2;
Dimension=28*28;
picturesNumber=1000;
sample=train_images(:,:,1:picturesNumber);
sample=reshape(sample,28*28,picturesNumber);
sample=sample';
class=zeros(1,picturesNumber);
times=[];
ratios=[];
for time=1:10tic;classCenter=sample(randperm(picturesNumber,k),:); % 随机取点iterator=0;while(true)iterator=iterator+1;nextCenter=zeros(k,Dimension);classNumber=zeros(1,k);for i=1:picturesNumberdistances=zeros(1,k);for j=1:kdistances(j)=pdist2(sample(i,:),classCenter(j,:));end[~,index]=sort(distances);class(i)=index(1);classNumber(class(i))=classNumber(class(i))+1;nextCenter(class(i),:)=nextCenter(class(i),:)+sample(i,:);endtemp=classCenter;for i=1:kif classNumber(i)~=0classCenter(i,:)=nextCenter(i,:)/classNumber(i);endendif temp==classCenterbreakendendmap=containers.Map('KeyType','int32','ValueType','int32');for i=1:knumber=[];for j=1:picturesNumberif class(j)==inumber=[number,train_labels(j)];endendmap(i)=mode(number);endcount=0;for i=1:picturesNumberif map(class(i))==train_labels(i)count=count+1;endendratio=count/picturesNumber;ratios=[ratios,ratio];times=[times,toc];
end

matlab代码kmeans++

clc;
clear;
load ./train_images.mat;
load ./train_labels.mat;
k = 10;
dimension = 2;
Dimension = 28 * 28;
picturesNumber = 100;
sample = train_images(:, :, 1:picturesNumber);
sample = reshape(sample, 28 * 28, picturesNumber);
sample = sample';
class = zeros(1, picturesNumber);
times = [];
ratios = [];
for time = 1:10tic;% K-Means++ initial center selectionclassCenter = zeros(k, Dimension);classCenter(1, :) = sample(randi(picturesNumber), :);for j = 2:kdistances = pdist2(sample, classCenter(1:j-1, :));minDistances = min(distances, [], 2); % 为什么挑最近的呢?因为是挑离所有已选中心最远的[~, index] = max(minDistances);classCenter(j, :) = sample(index, :);enditerator = 0;while (true)iterator = iterator + 1;nextCenter = zeros(k, Dimension);classNumber = zeros(1, k);for i = 1:picturesNumberdistances = pdist2(sample(i, :), classCenter);[~, index] = min(distances);class(i) = index;classNumber(class(i)) = classNumber(class(i)) + 1;nextCenter(class(i), :) = nextCenter(class(i), :) + sample(i, :);endtemp = classCenter;for i = 1:kif classNumber(i) ~= 0classCenter(i, :) = nextCenter(i, :) / classNumber(i);endendif isequal(temp, classCenter)break;endendmap = containers.Map('KeyType', 'int32', 'ValueType', 'int32');for i = 1:knumber = [];for j = 1:picturesNumberif class(j) == inumber = [number, train_labels(j)];endendmap(i) = mode(number);endcount = 0;for i = 1:picturesNumberif map(class(i)) == train_labels(i)count = count + 1;endendratio = count / picturesNumber;ratios = [ratios, ratio];times = [times, toc];
end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/140766.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

亚马逊云科技Zero ETL集成全面可用,可运行近乎实时的分析和机器学习

亚马逊云科技数据库、数据分析和机器学习全球副总裁Swami Sivasubramanian曾指出:“数据是应用、流程和商业决策的核心。”如今,客户常用的数据传输模式是建立从Amazon Aurora到Amazon Redshift的数据管道。这些解决方案能够帮助客户获得新的见解&#x…

通讯协议学习之路(实践部分):SPI开发实践

通讯协议之路主要分为两部分,第一部分从理论上面讲解各类协议的通讯原理以及通讯格式,第二部分从具体运用上讲解各类通讯协议的具体应用方法。 后续文章会同时发表在个人博客(jason1016.club)、CSDN;视频会发布在bilibili(UID:399951374) 本文…

Spring的Redis客户端

如何在Spring中操作redis 在创建springboot项目的时候引入redis的依赖. 在配置文件里指定redis主机的地址和端口,此处我们配置了ssh隧道,所以连接的就是本机的8888端口. 创建一个controller类,注入操作redis的对象. 前面使用jedis,是通过jedis对象里的各种方法来操作redis的,此…

Ionic组件 ion-list ion-list-header

1 ion-list 列表由多行项目组成,这些项目可以包含 text, buttons, toggles, icons, thumbnails等。列表通常包含具有类似数据内容的项目,如 images and text。 列表支持多种交互,包括滑动项目以显示选项、拖动以重新排列列表中的项目以及删除…

MySQL表的增删改查(进阶)

目录 数据库约束 约束的定义 约束类型 null约束 unique:唯一约束 default:默认值约束 primary key:主键约束(重要) foreign key:外键约束(描述两个表之间的关联) 表的设计 一般思路 三大范式 一对一 一对多 ​编辑 多对多 ​编辑 新增 查询 聚合查询 聚合函…

Ridgeline plot / 远山图 / 山脊图 怎么画?怎么优化?

工具 Origin 2022 当然,用Matlab、Python也是可以的。 颜色配置 色卡调整

GEE:将鼠标变成十字指针,点击获取影像值,显示值到UI中

作者:CSDN _养乐多_ 本文记录了在 Google Earth Engine(GEE)开发中,将鼠标变成十字指针,点击获取影像值,显示值到UI中的代码片段。这段代码复制过去修改变量名就可以用了。 效果如下图所示, …

Transformer详解一:transformer的由来和先导知识

目录 参考资料前言一、预训练二、神经网络语言模型(NNLM):预测下一个词one-hot编码的缺陷词向量(word embedding) 三、Word2Vec模型:得到词向量CBOWSkip-gramWord2Vec和NNLM的区别Word2Vec的缺陷 四、ELMO模…

Python---练习:把8名讲师随机分配到3个教室

案例:把8名讲师随机分配到3个教室 列表嵌套:有3个教室[[],[],[]],8名讲师[A,B,C,D,E,F,G,H],将8名讲师随机分配到3个教室中。 分析: 一步步来解决。 首先, 要求有3个教室,第一间教室、第二间…

微信小程序真机调试连接状态一直在正常和未链接之间反复横跳?

背景:小程序真机调试的时候,发现真机的network不显示接口调用情况,控制台也没有输出内容。具体如下所示; 解决方法: 1、确保手机端连接的网络和微信开发者工具网络一致,比如用同一个WiFi 2、真机自动调试…

Ubuntu 22.04源码安装cmake 3.27.7

安装参考博客是《ubuntu安装cmake》和《Ubuntu 安装CMake》。 https://cmake.org/download是cmake官网下载的网址。 sudo wget -c https://github.com/Kitware/CMake/releases/download/v3.27.7/cmake-3.27.7.tar.gz可以下载源码,最后显示‘cmake-3.27.7.tar.gz’…

leetcode刷题 - SQL - 中等

1. 176. 第二高的薪水 筛选出第二大 查询并返回 Employee 表中第二高的薪水 。如果不存在第二高的薪水,查询应该返回 null(Pandas 则返回 None) 。查询结果如下例所示。 666中等的第一题就上强度 强行解法 select max(salary) as SecondHighestSalary from Emp…

Allegro层叠中的Etch Factor-铜皮的腐蚀因子如何计算

Allegro层叠中的Etch Factor-铜皮的腐蚀因子如何计算 在用Allegro进行PCB设计的时候,Cross-section中需要填入对应的信息,一般填入每层的厚度即可,如下图 当PCB需要进行仿真分析的时候,Etch-Factor这个值是必须要填写的,如下图 目前看到的都是90这个值,这是一个理论值。 …

c语言实现两个有序链表的合并

合并两个有序链表是c语言数据结构中比较经典的问题,首先两个链表都是有序的,即节点的顺序是按照各个节点中的值从小到大排序,而且合并之后的新链表中的各个节点顺序也要满足从小到大的排序,具体如下图所示。 思路:用ma…

Java的类与Golang的结构体的区别

Java作为一门面向对象(OOP)的编程语言,它有类(class)的存在,而对于Golang,它不完全遵从OOP编程语言的设计思想,但它也有类似Java类的结构存在,那就是结构体(s…

宝塔开心版hostcli的广告去除

首先感谢hostcli把宝塔7.6剥离了,直接安装我这里是缺少pyenv的包。 直接进入正题吧。 定位到页面左下方的广告位于 /www/server/panel/BTPanel/templates/default/layout.html “退出”按钮下方有条线开始去掉 去掉之前的忘了截图了,就这样吧&#xff…

【数据结构】反射、枚举

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈数据结构 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 反射、枚举 1. 反射1.1 定义1.2 反射…

阿里云配置ECS实例的IPv6地址,开通公网IPv6

1.阿里云ECS服务器开通IPv6地址,开通公网IPv6 1.1.官网教程 配置ECS实例的IPv6地址 1.2.相关截图 1.2.1.专有网络VPC开通IPv6 1.2.2.交换机switch开通IPv6 1.2.3.开通IPv6网关并开通公网宽带 1.2.4.ECS服务器绑定IPv6网关 1.2.5.安全组开通IPv6 1.2.6.主机测试I…

【Docker】深入理解Docker:一种革新性的容器技术

前言 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 📕作者简介:热…

SpringBoot3基础特性

SpringBoot3基础特性 SpringApplication 自定义banner 类路径添加banner.txt或设置spring.banner.location就可以定制banner推荐网站:Spring Boot banner在线生成工具,制作下载英文banner.txt,修改替换banner.txt文字实现自定义。 提示: 可以通过修改配…