【论文阅读】NeROIC:在线图像集合中对象的神经渲染

论文连接: NeROIC: Neural Rendering of Objects from Online Image Collections

introduction

从在线图像集合中获取对象表示的新颖方法,从具有不同相机、照明和背景的照片中捕获任意对象的高质量几何形状和材料属性。这使得各种以对象为中心的渲染应用程序成为可能,例如新颖的视图合成、重新照明以及来自具有挑战性的野外输入的协调背景合成。

  • 使用扩展神经辐射场的多阶段方法,我们首先推断表面几何形状并细化粗略估计的初始相机参数,同时利用粗略的前景对象掩模来提高训练效率和几何质量。
  • 我们还引入了一种强大的法线估计技术,可以消除几何噪声的影响,同时保留关键细节。
  • 最后,我们提取表面材料属性和环境照明,以球谐函数表示,并具有处理瞬态元素(例如锐阴影)的扩展。

这些组件的结合产生了高度模块化且高效的对象获取框架。广泛的评估和比较证明了我们的方法在捕获对渲染应用程序有用的高质量几何和外观属性方面的优势

我们从在线图像中捕获对象的结果。 我们基于 NeRF 的模块化方法仅需要稀疏、粗略分割的图像来描绘在广泛变化的条件下捕获的对象(左上)。我们首先使用神经渲染(右上)将几何形状推断为密度场,然后计算对象的表面材质属性和每个图像的照明条件(中)。我们的模型不仅可以合成新颖的视图,还可以在新颖的环境和照明条件下重新照明和合成捕获的对象(底部)

可以在购物网站上或通过简单的图像搜索在线找到许多具有相同物体(例如家具、玩具、车辆)的图像集合。非常需要将这些对象与周围环境隔离并捕获高保真结构和外观的能力,因为它可以实现诸如从图像中数字化对象并将其混合到新背景等应用。然而,这些集合中物体的单个图像通常是在高度可变的背景、照明条件和相机参数下捕获的,使得专门为来自受控环境的数据设计的物体数字化方法不适合这种野外设置。在这项工作中,我们寻求通过扩展神经对象渲染的最新进展,开发一种从无约束图像集合中捕获和重新渲染对象的方法来解决这一挑战。

最近使用隐式 3D 场景表示的较著名的作品之一是神经辐射场 (NeRF) 模型 [ 22 ],它学习从稀疏校准图像中表示静态场景的局部不透明度和与视图相关的辐射度,从而实现高质量的新颖视图综合(NVS)。虽然在提高 NeRF的质量和功能方面取得了实质性进展(例如移动或非刚性内容 [29,26,14,41 ] ),但仍然存在一些重要的要求 - 合成背景对象的新颖视图应查看并固定照明条件,并且应在单个会话中捕获多视图图像或视频序列。

最近,一些作品 [ 6,20,3,4,49,43 ]扩展了 NeRF,并在将场景渲染分解为语义上有意义的组件(包括几何、反射率、材质和照明)方面取得了令人印象深刻的进展,从而实现了灵活的交互使用这些组件中的任何一个,例如重新照明和交换背景。不幸的是,他们都没有建立一个全面的解决方案来解决从现实世界、野外图像集合中捕获的对象的局限性。

在这项工作中,我们提出了NeROIC,一种对在线图像集合中的对象进行神经渲染的新颖方法。我们的对象捕获和渲染方法建立在神经辐射场的基础上,具有几个关键功能,可以从在截然不同的条件下捕获的稀疏图像中进行高保真捕获,这​​在在线图像集合中很常见,其中包含使用不同的照明、相机、环境拍摄的单个图像,和姿势。每个图像唯一预期的注释是粗略的前景分割和粗略估计的相机参数,至关重要的是,我们可以从运动结构框架(例如 COLMAP [33])以无监督且无成本的方式 获得这些参数。

我们基于学习的方法的关键是引入模块化方法,其中我们首先优化 NeRF 模型来估计几何形状并细化相机参数,然后推断最能解释图像的表面材料属性和每幅图像的照明条件。捕获的图像。这些阶段的解耦使我们能够使用第一阶段的深度信息在第二阶段进行更有效的光线采样,从而提高材质和照明估计质量和训练效率。此外,由于我们方法的模块化,我们还可以在第一阶段单独利用从几何体初始化的表面法线,并通过新的法线提取层进行创新,以提高获取底层对象材料的准确性。我们的方法概述如图 2 (b) 所示。

为了评估我们的方法,我们创建了几个野外对象数据集,包括我们自己在不同环境中捕获的图像,以及从在线资源收集的对象图像。在这些具有挑战性的设置中,与最先进的替代方案的比较表明,我们的方法在质量和数量上都优于替代方案,同时仍然保持可比的训练和推理效率。图 1展示了我们的方法的一组示例对象捕获和应用结果。

一种新颖的模块化管道,用于从在不同条件下捕获的物体推断几何和材料属性,仅使用稀疏图像、前景掩模和粗糙相机姿势作为附加输入,

一种新的多阶段架构,我们首先提取几何形状并细化输入相机参数,然后推断对象的材料属性,我们证明它对不受限制的输入具有鲁棒性,

一种从神经辐射场估计法线的新方法,使我们能够比更标准的替代技术更好地估计材料属性并重新照亮物体,

包含在变化和具有挑战性的环境和条件下捕获的物体图像的数据集,

使用这些和其他已建立的数据集进行广泛的评估、比较和结果,展示了通过我们的方法获得的最先进的结果。

方法

所有这些方法都不可避免地容易受到复杂阴影输入的影响,即尖锐的阴影和镜面反射,因为它们仅包含一个相对简单的基于物理的渲染器。虽然我们并不声称要学习如何在我们的方法中适应这些阴影,但在我们的工作中,我们引入了基于 [ 49 ]的瞬态组件来识别它并将其与环境照明分开,从而获得对象的无偏差材料属性。据我们所知,我们是第一个基于 NeRF 的方法,可以通过来自互联网的完全不受约束的图像来推断目标的几何形状和材料参数。

在这里插入图片描述
在第一阶段,我们通过学习指示物理内容的密度场来估计对象的几何形状(第 3.3节)。在此阶段,我们还学习静态和瞬态辐射值,以允许基于图像的监督,但不会将此信息完全分解为材质和照明属性。我们还优化相机的姿态和内在参数,以细化作为输入提供的粗略估计。

在第二阶段,我们修复学习的几何形状并优化在任意照明条件下重新渲染对象所需的表面材质和照明参数(第 3.5 节 )。在此阶段,我们使用从相机到物体表面的估计距离来改进沿相机光线的点采样。我们还优化了表面法线,这改进了从密度场获得的粗略估计(第 3.4节)。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/140415.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于蚁狮算法优化概率神经网络PNN的分类预测 - 附代码

基于蚁狮算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蚁狮算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蚁狮优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

【已验证】php配置连接sql server中文乱码(解决方法)更改utf-8格式

解决数据库中的中文数据在页面显示乱码的问题 在连接的$connectionInfo中设置"CharacterSet" > "UTF-8",指定编码方式即可 $connectionInfo array("UID">$uid, "PWD">$pwd, "Database">$database…

【springboot】Failed to start bean ‘webServerStartStop‘;

新同事新建了一个项目springboot项目,启动时候报错。 具体错误如下: Failed to start bean webServerStartStop; nested exception is org.springframework.boot.web.server.WebServerException: Unable to start embedded Tomcat server 未能启动bea…

(论文阅读26/100)Weakly-supervised learning with convolutional neural networks

26.文献阅读笔记 简介 题目 Weakly-supervised learning with convolutional neural networks 作者 Maxime Oquab,Leon Bottou,Ivan Laptev,Josef Sivic,CVPR,2015 原文链接 http://www.cv-foundation.org/open…

深度探究深度学习常见数据类型INT8 FP32 FP16的区别即优缺点

定点和浮点都是数值的表示(representation),它们区别在于,将整数(integer)部分和小数(fractional)部分分开的点,点在哪里。定点保留特定位数整数和小数,而浮点…

C++——const成员

这里先用队列举例&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #include <iostream> #include <assert.h> using namespace std; class SeqList { public:void pushBack(int data){if (_size _capacity){int* tmp (int*)realloc(a, sizeof(int) * 4);if (tm…

excel记录wFm数值(推理过程)

1 导入计算wfm库2 实例化具体的指标 3 列表循环之前&#xff0c;设置空list 4 单图评测-将图号、图片名、数值记录 列表里面存储dict 5 将excel列表结果逐个存入excel.xlsx文件 完整代码 test_CPD.py ### test_CPD.py ### import torch import torch.nn.functional as Fimpor…

flv.js在vue中的使用

Flv.js 是 HTML5 Flash 视频&#xff08;FLV&#xff09;播放器&#xff0c;纯原生 JavaScript 开发&#xff0c;没有用到 Flash。由 bilibili 网站开源。它的工作原理是将 FLV 文件流转码复用成 ISO BMFF&#xff08;MP4 碎片&#xff09;片段&#xff0c;然后通过 Media Sour…

​《水经注全国三维离线GIS系统》硬件安装教程

有些工作&#xff0c;是需要一些外在动力才能完成的。 为什么这么讲呢&#xff1f; 因为正是在客户的要求下&#xff0c;我们才撰写了《水经注全国三维离线GIS系统》的硬件安装教程&#xff0c;而且还录制了视频教程。 当用户收到货物以后&#xff0c;就可以通过本教程清点货…

信驰达科技加入车联网联盟(CCC),推进数字钥匙发展与应用

CCC)的会员。 图 1 深圳信驰达正式成为车联网联盟(CCC)会员 车联网联盟(CCC)是一个跨行业组织&#xff0c;致力于推动智能手机与汽车连接解决方案的技术发展。CCC涵盖了全球汽车和智能手机行业的大部分企业&#xff0c;拥有150多家成员公司。CCC成员公司包括智能手机和汽车制造…

Springboot+vue的人力资源管理系统(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的人力资源管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的企业资产管理系统&#xff0c;采用M&#xff08;model&…

react+星火大模型,构建上下文ai问答页面(可扩展)

前言 最近写的开源项目核心功能跑通了&#xff0c;前两天突发奇想。关于项目可否介入大模型来辅助用户使用平台&#xff0c;就跑去研究了最近比较活火的国内大模型–讯飞星火大模型。 大模型api获取 控制台登录 地址&#xff1a;https://console.xfyun.cn/app/myapp 新建应…

迅为龙芯2K1000开发板虚拟机ubuntu启动root用户

作为嵌入式开发人员&#xff0c;系统的所有权限都要为我们打开&#xff0c;所以我们不必像运维那样&#xff0c;对 root 用户非常敏感&#xff0c;所以安装完 ubuntu 系统以后&#xff0c;我们要启用 root 用户。 首先我们打开 ubuntu 控制终端&#xff0c;然后在终端里面输入…

[SOC] MBIST (Memory Built-In Self Test) and Memory Built-in Self Repair (BISR)

存储器构成了 VLSI 电路的很大一部分。存储系统设计的目的 是存储大量数据。[1] 存储器不包括逻辑门和触发器。因此&#xff0c;需要不同的故障模型和测试算法来测试存储器。 MBIST 是一种自测试和修复机制&#xff0c;它通过一组有效的算法来测试存储器&#xff0c;以检测典型…

【阿里云】任务2-OSS对象存储教程(找我参加活动可获得京东卡奖励)

目录 前言说明第一步第二步第三步&#xff1a;开通并使用OSS传输加速三、清理第四步-提交作品第五步-提交记录到小程序 前言 本次任务是阿里云官方发出的&#xff0c;每个任务30软妹币&#xff0c;欢迎大家加入我的活动群&#xff0c;门槛很低&#xff0c;所有人都可以参加&…

代码随想录算法训练营第五十天丨 动态规划part13

300.最长递增子序列 思路 首先通过本题大家要明确什么是子序列&#xff0c;“子序列是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序”。 本题也是代码随想录中子序列问题的第一题&#xff0c;如果没接触过这种…

能跟“猫主子”聊天了!生成式AI最快5年内破译第一种动物语言

image.png ChatGPT用它自己的方式来理解世界&#xff0c;类似的技术是否也能用来学习动物的语言&#xff1f; 所罗门能够与动物交流并不是因为他拥有魔法物品&#xff0c;而是因为他有观察的天赋。 ——康拉德・劳伦兹《所罗门王的指环》 在《狮子王》、《疯狂动物城》等以动…

Java通过JNI技术调用C++动态链接库的helloword测试

JNI调用原理 原理就不细说了&#xff0c;其实就是写个库给Java调&#xff0c;可以百度一下Java JNI&#xff0c;下面是HelloWorld代码测试 编写一个本地测试类 package com.my.study.cpp_jni;/*** 测试Java调用C库* <p>使用命令javac -h . NativeTest.java自动生成C头…

红海云签约湘湖实验室,助力科研机构人力资源数字化全面升级

湘湖实验室&#xff08;农业浙江省实验室&#xff09;是由浙江省农业科学院和萧山区人民政府共同举办的新型研发机构&#xff0c;定位为农业核心种质资源生物制造与生物互作科学问题和核心技术研究&#xff0c;瞄准世界农业科技发展前沿&#xff0c;面向国家重大战略&#xff0…

Ubuntu(WSL2) mysql8.0.31 源码安装

要在 Ubuntu 上使用调试功能安装 MySQL 8.0 的源码&#xff0c;可以按照以下详细步骤进行操作&#xff1a; 1. 更新系统 首先&#xff0c;确保你的 Ubuntu 系统是最新的。运行以下命令更新系统软件包&#xff1a; sudo apt update sudo apt upgrade 2. 下载 MySQL 源码 访…